• Title/Summary/Keyword: chemical amplification

Search Result 80, Processing Time 0.028 seconds

Detection of Sequence-Specific Gene by Multi-Channel Electrochemical DNA Chips

  • Zhang, Xuzhi;Ji, Xinming;Cui, Zhengguo;Yang, Bing;Huang, Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • Five-channel electrochemical chips were fabricated based on the Micro-electromechanical System (MEMS) technology and were used as platforms to develop DNA arrays. Different kinds of thiolated DNA strands, whose sequences were related to white spot syndrome virus (WSSV) gene, were separately immobilized onto different working electrodes to fabricate a combinatorial biosensor system. As a result, different kinds of target DNA could be analyzed on one chip via a simultaneous recognition process using potassium ferricyanide as an indicator. To perform quantitative target DNA detection, a limit of 70 nM (S/N=3) was found in the presence of 600 nM coexisting noncomplementary ssDNA. The real samples of loop-mediated isothermal amplification (LAMP) products were detected by the proposed method with satisfactory result, suggesting that the multichannel chips had the potential for a high effective microdevice to recognize specific gene sequence for pointof-care applications.

Highly-sensitive Detection of Salvianolic Acid B using Alumina Microfibers-modified Electrode

  • Sun, Dong;Zheng, Xiaoyong;Xie, Xiafeng;Yang, Xiaofeng;Zhang, Huajie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3357-3361
    • /
    • 2013
  • Alumina microfibers with porous structures were prepared through hydrothermal reaction, and then used to modify the surface of carbon paste electrode (CPE). After modification with alumina microfibers, the electrochemical activity of CPE was found to be greatly improved. On the surface of alumina microfibers-modified CPE, the oxidation peak current of salvianolic acid B, a main bioactive compound in Danshen with anti-oxidative and anti-inflammatory effects, was remarkably increased compared with that on the bare CPE surface. The influences of pH value, amount of alumina microfibers and accumulation time were studied. Based on the strong signal amplification effects of alumina microfibers, a novel electrochemical method was developed for the detection of salvianolic acid B. The linear range was from 5 ${\mu}gL^{-1}$ to 0.3 mg $L^{-1}$, and the detection limit was 2 ${\mu}gL^{-1}$ (2.78 nM) after 1-min accumulation. The new method was successfully used to detect salvianolic acid B in ShuangDan oral liquid samples, and the recovery was over the range from 97.4% to 102.9%.

A Simple, Rapid, and Automatic Centrifugal Microfluidic System for Influenza A H1N1 Viral RNA Purification

  • Park, Byung Hyun;Jung, Jae Hwan;Oh, Seung Jun;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.1-277.1
    • /
    • 2013
  • Molecular diagnostics consists of three processes, which are a sample pretreatment, a nucleic acid amplification, and an amplicon detection. Among three components, sample pretreatment is an important process in that it can increase the limit of detection by purifying nucleic acid in biological sample from contaminants that may interfere with the downstream genetic analysis such as nucleic acid amplification and detection. To achieve point-of-care virus detection system, the sample pretreatment process needs to be simple, rapid, and automatic. However, the commercial RNA extraction kits such as Rneasy (Qiagen) or MagnaPure (Roche) kit are highly labor-intensive and time-consuming due to numerous manual steps, and so it is not adequate for the on-site sample preparation. Herein, we have developed a rotary microfluidic system to extract and purify the RNA without necessity of external mechanical syringe pumps to allow flow control using microfluidic technology. We designed three reservoirs for sample, washing buffer, and elution buffer which were connected with different dimensional microfluidic channels. By controlling RPM, we could dispense a RNA sample solution, a washing buffer, and an elution buffer successively, so that the RNA was captured in the sol-gel solid phase, purified, and eluted in the downstream. Such a novel rotary sample preparation system eliminates some complicated hardwares and human intervention providing the opportunity to construct a fully integrated genetic analysis microsystem.

  • PDF

Effect of Pressure on Acoustic Pressure Response and NO Formation in Diluted Hydrogen-Air Diffusion Flames (희석된 수소-공기 확산 화염에서 음향파 응답과 NO 생성에 미치는 압력의 영향)

  • Sohn, Chae-Hoon;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.11-20
    • /
    • 1999
  • Acoustic pressure response and NO formation of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such non-monotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. Acoustic pressure response in each regime is investigated based on the Rayleigh criterion. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted. Emission index of NO shows similar behaviors as to the peak-temperature variation with pressure.

  • PDF

Transient Protection of Intramolecular Hydrogen Bonding: A Simple but Elegant Approach for Functional Imaging

  • Kim, Jong-Man;Min, Sung-Jun;Park, Bum-Jun;Lee, Jae-Hyung;Ahn, Kwang-Duk
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.493-500
    • /
    • 2004
  • We have developed a novel method for patterning functional images in thin polymer films. The key materials we utilized for the imaging were dihydroxyanthraquinones protected with acid-labile tert-butoxycarbonyl (t-Boc) blocking groups. Among the tested compounds, 1,4-dihydroxyanthraquinone (quinizarin; 1) underwent the most drastic change in terms of its color and fluorescence upon protection. We prepared the t-Boc-protected quinizarin and polymers bearing the protected quinizarins as pendent groups. To investigate the possibility of a single-component imaging system, we synthesized a styrenic monomer 14 incorporating protected quinizarin and a maleimide derivative 15 bearing a photoacid generating group and subjected them to polymerization. Selective removal of the protecting groups of the quinizarin moieties in the exposed area using photolithographic techniques allowed regeneration of quinizarin and patterned fluorescence images in the polymer films.

Detection of Mycobacterium Tuberculosis by Loop-Mediated Isothermal Amplification Assay (등온 증폭법을 이용한 결핵균의 빠른 검출 시스템 개발)

  • Ahn, Young-Chang;Nam, Youn-Hyoung;Park, Su-Min;Cho, Min-Ho;Seo, Jae-Won;Yoon, Il-Kyu;Park, Yong-Hyun;Jang, Won-Cheoul
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.273-280
    • /
    • 2008
  • Mycobacterium tuberculosis (MTB) remains a major worldwide public health problem. In recent years, the incidence of MTB has been rising. Rapid and reliable diagnosis of Mycobacterium tuberculosis is essential to initiate correct treatment, avoid severe complications, and prevent transmission. LAMP was used to develop a rapid and sensitive laboratory diagnostic system for the MTB. In this research, the loop-mediated isothermal amplification method (LAMP) that amplifies DNA with high specificity and rapidity at an isothermal condition was evaluated for rapid detection of MTB. Undiluted DNA (2.10 × 106 copy/mL), 10-1, 10-2, 10-3, 10-4, 10-5 and 10-6 (copy/mL) of MTB DNA were amplified by PCR and LAMP to determine the sensitivity of the assay. At results, the LAMP assay reported here has the advantages of rapid amplification, high sensitivity, and high specificity and will be useful for rapid and reliable clinical diagnosis of MTB in hospital clinical laboratory.

Aptamers as Functional Nucleic Acids: in vitro Selection and Biotechnological Applications

  • You, Kyung-Man;Lee, Sang-Hyun;Aesul Im;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.64-75
    • /
    • 2003
  • Aptamers are functional nucleic acids that can specially bind to proteins, peptides, amino acids. nucleotides, drugs, vitamins and other organic and inorganic compounds. The aptamers are identified from random DNA or RNA libraries by a SELEX (systematic evolution of ligands by exponential amplification) process. As aptamers have the advantage, and potential ability to be released from the limitations of antibodies, they are attractive to a wide range of therapeutic and diagnostic applications. Aptamers, with a high-affinity and specificity, could fulfil molecular the recognition needs of various fields in biotechnology. In this work, we reviewed some aptamer Selection techniques, properties, medical applications of their molecules and their biotechnological applications, such as ELONA (enzyme linked oligonucleotide assay), flow cytometry, biosensors, electrophoresis, chromatography and microarrays.

Numerical and Experimental Analyses of a Hot-Wire Gas Flowmeter

  • Kim, Byoung-Chul;Joung, Ok-Jin;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1201-1206
    • /
    • 2003
  • A measurement device for gas flow rate using hot-wire module is developed for the utilization in low-accuracy industrial applications. The module has three wires of measuring and heating, and a bridge circuit is installed to detect electric current through the wire in the module. An amplification of the signal and conversion to digital output are conducted for the online measurement with a personal computer. In addition, temperature distribution in the module is numerically analyzed to examine the measured outcome from the module experiment. The flow rate of air and carbon dioxide gas is separately measured for the performance examination of the device. The experimental relation of measurement and flow agrees with the prediction from the numerical analysis. The outcome of the performance test indicates that the accuracy and reproducibility of the module is satisfactory for the purpose of industrial applications.

  • PDF

A Study on the Thermal Characteristics of a $MgO/H_2O$ Chemical Heat Pump ($MgO/H_2O$ 계 화학식 열펌프의 열적 특성에 관한 연구)

  • ;;;;Yukitaka Kato
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.34-41
    • /
    • 2004
  • The chemical heat pump based on the Dehydration/Hydration process with a MgO/$H_2O$ system has been researched. The reactor bed could be expected to store the heat around 200∼37$0^{\circ}C$ by the dehydration reaction and to release the heat around 100∼16$0^{\circ}C$ by the hydration reaction under the heat amplification mode operation. The heat output rate of the heat pump system was evaluated using the experimentally determined parameters. The results show that 6∼50 W/kg of heat output and 0.5∼0.8 of heat recovery ratio are attainable. The heat pump will be applicable for a load leveling in a co-generation system by chemical storage of surplus heat at low heat demand and by supplying heat in the peak load period.

Development of Loop-mediated Isothermal Amplification (LAMP) for Detection of Vibrio alginolyticus (Loop-mediated isothermal amplification (LAMP)법을 이용한 Vibrio alginolyticus의 신속 진단법 개발)

  • Hong, Seung-hyun;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.903-909
    • /
    • 2015
  • Loop-mediated isothermal amplification (LAMP), a PCR-based diagnostic method, is based on autocycling strand displacement DNA synthesis in the presence of exonuclease-negative Bst DNA polymerase under isothermal conditions. With the help of four specific primers that recognize six different sequences of a target DNA, LAMP has high specificity in pathogenic identification in a short time. Hence, in the present study, LAMP is used as a diagnostic tool in the identification of the most dreadful aquatic pathogenic species, Vibrio alginolyticus, and to develop species-specific LAMP primers and optimization of LAMP reaction conditions such as annealing temperature, elongation time, and other PCR chemical concentrations, including MgSO4, dNTPs, Betaine, and Bst polymerase. The optimized LAMP primers were also checked for specificity with other Vibrio species, which showed that the designed primers were very specific to V. alginolyticus After the first introduction of a species name like this one, the first part (“Vibrio” in this case) should be abbreviated to only the first letter.only. These are usually the most harmful pathogens of the Vibrio species that appear in shrimp and crabs. The results also revealed that the LAMP assay could be 10-fold more sensitive than conventional PCR in detecting V. alginolyticus. This could be the first report on using a rapid and highly sensitive technique, the LAMP assay, in the effective diagnosis of the pathogenic bacteria V. alginolyticus, which could help in the early detection of diseases, particularly in aquaculture.