• Title/Summary/Keyword: chemical admixtures

Search Result 116, Processing Time 0.03 seconds

A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures (광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구)

  • 문한영;신국재;이창수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.

Self-compacting light-weight concrete; mix design and proportions

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.143-161
    • /
    • 2016
  • Utilization of mineral and chemical admixtures in concrete technology has led to changes in the formulation and mix design in recent decades, which has, in turn, made the concrete stronger and more durable. Lightweight concrete is an excellent solution in terms of decreasing the dead load of the structure, while self-compacting concrete eases the pouring and removes the construction problems. Combining the advantages of lightweight concrete and self-compacting concrete is a new and interesting research topic. Considering its light weight of structure and ease of placement, self-compacting lightweight concrete may be the answer to the increasing construction requirements of slender and more heavily reinforced structural elements. Twenty one laboratory experimental investigations published on the mix proportion, density and mechanical properties of lightweight self-compacting concrete from the last 12 years are analyzed in this study. The collected information is used to investigate the mix proportions including the chemical and mineral admixtures, light weight and normal weight aggregates, fillers, cement and water. Analyzed results are presented in terms of statistical expressions. It is very helpful for future research to choose the proper components with different ratios and curing conditions to attain the desired concrete grade according to the planned application.

The characteristics of compressive strength resistance of concrete combined with corrosion inhibitors and mineral admixtures under simulated tidal condition (인공 해수 간헐 조건에서의 방청제 및 혼화재를 사용한 콘크리트 압축강도 및 저항의 특성)

  • 이용은;장태순;양우석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.641-646
    • /
    • 1998
  • The structures exposed to marine environment do not show long-term durability due to corrosion of steel and deterioration of concrete by the attack of various salts dissolved in sea water. In this study, Partial substitution of cement with fly ash(20%) or blast furnace slag(40%) was made together with the addition of 4 different corrosion-inhibitors, as a protective measure of concrete structures against chemical attack of salts. Combined effects of mineral and corrosion-inhibiting admixtures were tested by measuring the resistance and compressive strength of concretes under the simulated tidal condition, which consists of alternating 12 hour periods of immersion in artificial sea water and drying in air. Both the strength and concrete resistance were found to decrease in following order, regardless of the corrosion inhibitors the concretes with blast furnace slag, those with fly ash and those without any mineral admixtures. The interrelation between compressive strength of concrete and resistance was investigated.

  • PDF

Optimum Mix Design of Concrete(II) (콘크리트 용도별 최적배합을 위한 연구(II))

  • 심재원;이병덕;양우석;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.175-178
    • /
    • 1999
  • In most domestic construction fields, excessive cement content has been used because of stubborn official inspection. The purpose of this study is to reduce the cement content of mix proportioning for the decrease of hydration heat, brittleness and drying shrinkage which governs durability of concrete significantly. Parameters includes the compressive strengths, type and dosage rate of chemical and mineral admixtures and types of concrete. It is found that the chemical admixture is efficient to the reduction of cement content for high strength concrete (400kg/$\textrm{cm}^2$) and the effectiveness of mineral admixtures in the low strength concrete is somewhat higher than the high strength concrete.

  • PDF

A Study on the $Cl^-$ ion property of antiwashout concrete using the superplasticizer agent (고유동화재를 사용한 수중불분리콘크리트의 Cl 이온 특성고찰)

  • 김동석;최재웅;구본창;하재담;엄태형;신연식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.117-122
    • /
    • 1999
  • The antiwashout concrete which is a type of specific concrete is manufactured by using a plenty of superplasticizer with the non-dispersible underwater concrete admixture, and the application of it on construction site is being increased. But when we measure choride ion content by using the potentiographic tester, because it is over total chloride ion content(0.3kg/㎥ under) of Korean Concrete Specification, the claim of construction site is being presented on the quality of antiwashout concrete. Accordingly, hte aim of this study is to verify actual chloride ion content of antiwashout concrete by chloride ion analysis due to chemical admixtures by performance of antiwashout concrete. In conclusion the actual chloride ion content of antiwashout concrete is overestimated by anion($OH^-, SO4^{-2}, S^{-2}, etc) of chemical admixtures, and is proved to be as low as that of ordinary concrete.

  • PDF

Simulation of Hydration of Portland Cement Blended With Mineral Admixtures

  • Wang, Xiaoyong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.565-566
    • /
    • 2009
  • Supplementary cementing materials (SCM), such as silica fume, slag, and low-calcium fly ash, have been widely used as mineral admixtures in high strength and high performance concrete. Due to the chemical and physical effect of SCM on hydration, compared with Portland cement, hydration process of cement incorporating SCM is much more complex. This paper presents a numerical hydration model which is based on multi-component concept and can simulate hydration of cement incorporating SCM. The proposed model starts with mixture proportion of concrete and considers both chemical and physical effect of SCM on hydration. Using this proposed model, this paper predicts the following properties of hydrating cement-SCM blends as a function of hydration time: reaction ratio of SCM, calcium hydroxide content, heat evolution, porosity, chemically bound water and the development of the compressive strength of concrete. The prediction results agree well with experiment results.

  • PDF

Influence of the Type and quantity of chemical admixtures on Setting Time and Compressive Strength of Concrete (혼화제 종류 및 사용량이 콘크리트의 응결 및 강도에 미치는 영향)

  • Kong, Tae-Woong;Lee, Soo-Hyung;Kwon, Choon-Woo;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.369-370
    • /
    • 2010
  • We conducted this study to compare material and mechanical properties in accordance with the type and amount of chemical admixtures used for reducing water and compensation for strength. There is a purpose to characterize setting time and strength of concrete, and apply to derive field mixture design.

  • PDF

Enhanced Durability Performance of Polymer Modified Cement Composites for Concrete Repair Under Combined Aging Conditions (복합열화 환경을 받는 콘크리트 시설물을 위한 보수용 폴리머 시멘트 복합체의 내구성능 향상에 관한 연구)

  • Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.27-34
    • /
    • 2005
  • The purpose of this study is to improve the durability performance of polymer modified cement composites for repair of concrete under combined aging conditions. The experimental procedure was divided into three parts. First, the replacement level of mineral admixtures in polymer modified cement composites were determined in an experimental study based on a Box Behnken design. Second, the flow value, compressive strength and chloride permeability test of sixteen types of mixtures were conducted. Test results show that the polymer modified cement composites were effected on the improvement of the compressive strength and permeability performance. Third, the effects on the replacement level of silica fume mixture was evaluated by the compressive strength, chloride permeability, chemical resistance and repeated freezing and thawing cycles test. They demonstrated that the polymer modified cement composites using mixture of silica fume, fly ash, and blast furnace slag improved the durability performance.

Sulfate Attack According to the Quantity of Composition of Cement and Mineral Admixtures (시멘트 화학성분(C3A)과 무기 혼화재에 따른 황산염 침투 특성)

  • Ahn, Nam-Shik;Lee, Jae-Hong;Lee, Young-Hak
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.547-556
    • /
    • 2011
  • The primary factors affecting concrete sulfate resistance are the chemical composition of the Portland cement, and the chemistry and quantity of mineral admixtures. To investigate the effect of those on the sulfate attack, the testing program involved several different mortar mixes using the standardized test, ASTM C1012. Four different cements were evaluated, including one Type I cement, two Type I-II cements, and one Type V cement. Mortar mixes were also made with mineral admixtures, as each cement was combined with three different types of mineral admixtures. One Class F fly ash, one Class C fly ash, and one ground granulated blast furnace slag (GGBFS) were added in various percent volumetric replacement levels. Expansion measurements were taken and investigated with the expansion criteria recommended by ASTM.