• Title/Summary/Keyword: chemical absorption

Search Result 2,184, Processing Time 0.034 seconds

Thermal Properties of DGEBHA/MDA/SN/zeolite System Degraded by Moisture Absorption

  • Kim, You-Jeong;Lee, Hong-Ki;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.479-482
    • /
    • 1999
  • Cured epoxy resins are extensively used for the electrical insulation in high-voltage equipments. The bisphenol A-based epoxy resins lured with azine show, especially, good thermal properties and mechanical resistances. For the technical and economic reasons, varing amount of inorganic fillers are added to endow the required special properties. In the large generators and motors of power plants, epoxy insulation is disclosed to the harsh conditions like the superheated steam and abrupt temperature variation. Hygrothermal aging at elevated temperatures tends to induce degradation in epoxy resins. To predict the effect of this degradation in DGEBA/MDA/SN/zeolite system, we proceeded the forced moisture absorption experiment using the autoclave. The thermal properties of the untreated and treated specimens were analyzed by DSC and TGA under the nitrogen flowing condition. The moisture absorption results showed a weight increase during hygrothermal aging at 1207. At the initial aging period, the system leaded to more or less postcuring but more prolonged environmental aging leaded the discoloration of specimen and lowering the T$_{g}$./.

  • PDF

Impurity Optical Absorption of Co2+ Ion in HgGa2S4:Co2+ Single Crystals (HgGa2S4:Co2+ 단결정에서 Co2+ 이온에 의한 광흡수 특성에 관한 연구)

  • 이상열;강종욱
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.579-583
    • /
    • 2003
  • HgGa$_2$S$_4$: Co$^{2+}$ single crystal were grown by the chemical transport reaction(CTR) method. In the optical absorption spectrum of the HgGa$_2$S$_4$: Co$^{2+}$ single crystal measured at 298K, three groups of impurity optical absorption peaks consisting of three peaks, respectively, were observed at 673nm, 734nm, and 760nm, 1621nm, 1654nm, and 1734nm, and 2544nm, 2650nm, and 2678nm. At 10K, the three peaks(673nm, 734nm, and 760nm) of the first group were split to be twelve peaks. These impurity optical absolution peaks are assigned to be due to the electronic transitions between the split energy levels of Co$^{2+}$ sited in the S$_4$ symmetry point.

Electronic Absorption and Raman Spectroscopic Studies of ${\alpha},{\omega}$-Diphenylpolyenyl Anions with Odd Number of Polyene Carbons

  • Kim, Jin Yeol;Kim, Eung Ryeol;Ju, Jae Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.837-841
    • /
    • 2001
  • The electronic absorption and Raman spectra of $\alpha\omega-diphenylpolyenyl$, anions Ph(CH)nPh- (DPn- , n = 3, 5, 7, 9, and 13), with odd number of carbons at the polyene part, have been studied in the tetrahydrofuran (THF) solutions and in their solid film states, respectively. In the case of Raman spectra for DPn- , the frequencies and relative intensities of some Raman peaks regularly change with the increase of polyene chain length. The spectral patterns of anions (DPn- ) are very similar with those of radical anion (DPn${\cdot}$- ). However, the C=C stretching peaks of DPn- anions are observed in the 25-35 cm-1 higher frequency region than those of DPn${\cdot}$- radical anions. In the case of long chain models such as DP9- and DP13- , the C=C stretching peaks are observed in even higher frequency region than those of the corresponding neutral polyenes such as DP8, DP10, and DP12. The Raman patterns of DPn- anions in the THF solutions are similar with those in their solid film states. On the other hand, their electronic absorption spectra show a considerable difference each other. The n- ${\pi}*$ electronic absorption bands of DPn- anions in the THF solutions have been observed in the 0.27-0.39 eV lower energy region than those in their solid film states due to the solvent effects on polyene anions.

Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding

  • Yang, Il-Seung;Jin, Seung-Min;Kang, Jun-Hee;Ramanathan, Venkatnarayan;Kim, Hyung-Min;Suh, Yung-Doug;Kim, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3090-3093
    • /
    • 2011
  • Curcumin is a natural product with antioxidant, anti-inflammatory, antiviral and antifungal functions. As it is known that the excited state intramolecular hydrogen transfer of curcumin are related to its medicinal antioxidant mechanism, we investigated its excited state dynamics by using femtosecond transient absorption spectroscopy in an effort to understand the molecule's therapeutic effect in terms of its photophysics and photochemistry. We found that stronger intermolecular hydrogen bonding with solvents weakens the intramolecular hydrogen bonding and decelerates the dynamical process of the enolic hydrogen. Exceptions are found in methanol and ethylene glycol due to their nature as simultaneous hydrogen bonding donor-acceptor and high viscosity solvent, respectively.

Synthesis and Characterization of Dendritic Nonlinear Optical Chromophore Containing Phenylene Attached with Bulky Alkyl Group

  • Choi, Jin-Joo;Kim, Kyoung-Mahn;Lim, Jong-Sun;Lee, Chang-Jin;Kim, Dong-Wook
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 2007
  • Star-shaped, nonlinear optical (NLO) material was synthesized and its optical, thermal, and electro-optic properties were investigated. Three NLO-active dipolar chromophores containing a phenylene ring substituted with a bulky alkyl chain as a conjugation bridge were chemically bonded to the core of 1,1,1-tris(4-hydroxyphenyl)ethane to form a dendritic architecture. The chemical structure and purity of the chromophore were verified by NMR spectroscopy. The chromophore exhibited a broad absorption band centered at around 608 nm tailing up to 760 nm in toluene solution and also showed a discernible solvatochromic shift in more polar solvent. The chloroform solution of the dendrimer produced an absorption band with a red-shifted maximum as large as 28 nm when compared to that of the toluene solution. It was thermally stable up to $275^{\circ}C$ in a nitrogen atmosphere and had a glass transition temperature of $76^{\circ}C$. In a preliminary result, the polymer film containing the dendritic compound exhibited a shift of 19 pm/V taken at $1.55{\mu}$.

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

Inter Landau Level Optical Absorption in Graphene Under Ultra-high Magnetic Field

  • Saito, H.;Nakamura, D.;Takeyama, S.;Kim, Yong-Min;An, K.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.360-360
    • /
    • 2012
  • Graphene shows diverse novel physical properties arising from its peculiar electronic states, so called Dirac electrons. Especially, effect of magnetic field is very unique, exhibiting exotic Landau level (LL) splitting. LLs are substantially modified by spins of Dirac electrons and pseudo-spins. The degeneracy of LLs is lifted to show splitting by electron-electron interaction and by the Zeeman effect. We investigated the magneto-optical absorption of graphene subjected to ultra-high magnetic field. Samples were prepared by the CVD method deposited on GaAs and Quart substrate. We have confirmed existence of graphene on each substrate by the micro-Raman spectroscopy. Next, we conducted magneto-absorption measurements in magnetic field up to 120 T by the single-turn coil (STC) method. We could observe absorption peak at 65 T and 100 T, respectively, probably arising from the LL inter-band transitions.

  • PDF

Absorption Characteristics of Soybean curd Powder by Drying Methods (건조방법에 따른 건조분말두부의 흡습특성)

  • Kim Jin-Sung;Kim Jun-Han;Ha Young-Sun
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • The absorption characteristics and their physical properties of hot air, vacuum and freeze dried soybean curd powder were investigated. Absorption conditions were at 5, 15, and 25 t with $0.11\~0.93$ water activities. Equilibrium moisture content and the monolayer moisture content determined by prediction models showed highest value in the freeze dried soybean curd powder due to porous structure. Absorption energy decreased with increasing water activity was not affected by drying method. In the comparisons of the isothermal absorption models, Oswin model generally was the best fit model for isothermal adsorption of soybean curd powder.

A Study on the Mechanical Properties and Moisture Control Performance of Diatomite filled Olefin Foams (규조토를 함유한 올레핀계 폼의 기계적 물성 및 수분 제어 성능에 관한 연구)

  • Kim, Jae Yang;Lee, Ji Eun;Seong, Dong Gi
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Products using diatomaceous earth, which are used in various fields, are optimized for moisture absorption, but have problems such as high hardness, powder flying, and rough surface feel. To improve this, an olefin-based foam having low hardness and high elasticity was prepared by adding an excessive amount of inorganic material using EVA (Ethylene vinyl acetate) having low hardness and excellent elasticity. Diatomaceous earth was added to impart moisture absorption characteristics of the foam, and the moisture absorption/drying characteristics showed a moisture absorption rate of about 10 to 15% and a moisture drying rate of 10 to 70% depending on the content of the diatomaceous earth. Through this study, it was possible to manufacture a water-absorbing olefin-based foam with diatomaceous earth added, and it was confirmed that the diatomaceous earth added to the foam had a great influence on water absorption and dissipation due to its microstructure and characteristics.