• Title/Summary/Keyword: charpy

Search Result 272, Processing Time 0.028 seconds

A study on the correlation between V charpy absorbed energy and critical COD value in the welded parts of high tensil strength steel under various welding methods (고장력강 용접부에 있어서 한계 COD값과 V charpy충격치와의 상관성에 관한 연구)

  • 김영식;김충해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.57-67
    • /
    • 1988
  • Although handicapped by the inability to bridge the size gap between small laboratory sample and large engineering component, the V charpy test sample method does possess certain advantages, such as each of preparation, simplicity of test method, speed, low cost in test machinery, and low cost per test. On the other hand, the COD test method does posses advantages, which reduce the size gap between the laboratory sample and actual engineering component. Consequently, the correlation between V charpy absorbed energy and the critical COD value is required for estimating critical COD value from the simple V charpy test results. In this paper, the high tensile strength steel AH36 plate specimens having a single edge cracked notch were investigated to find out the correlation between V charpy absorbed energy and critical COD value in the welded parts under such various welding methods as shielded metal arc welding, the submerged arc welding and the electro gas welding by means of V charpy impact test and static 3-point bending test. Main results obtained are as follow ; 1. The relationships between V charpy absorbed energy Wc' and critical COD value ($\delta_c$)show; $\delta_c$=0.0065 Wc'+0.1906. 2. Ductile- brittle transition behaviours can be estimated by means of fracture appearance and general yielding behaviours. 3. The V charpy absorbed energy of SMAW is higher than that of SAW, EGW and similar relationships are obtained in the COD tests.

  • PDF

Dynamic Fracture Properties of Nylon Thermoplastic Material Depending on Notch Angle with Charpy Impact Machine and Finite Element Method (유한요소법과 샤피충격시험기에 의한 노치각도에 따른 나일론 열가소성 플라스틱 재료의 파괴특성)

  • Park, Myung-Kyun;Lee, Jung-Won;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The notched Charpy impact test is one of the most prevalent techniques used to characterize the effect of high impulse loads on polymeric materials. In this study, a method of analysis in nylon plastic materials is suggested to evaluate the critical strain energy release rate for variation of notch angles from the Charpy impact energy measurement. Instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture properties and maximum critical load. The dynamic stress intensity factor of nylon plastic material was calculated for the ASTM Charpy specimen from the obtained maximum critical load. Also, the finite element model was developed to figure out the stress distributions for Charpy specimen with different notch angles subject to 3 point bending load which is equivalent to the load applied in the experiment.

  • PDF

Charpy Impact Properties of Heat Affected Zones of API X80 Linepipe Steels Containing Complex Oxides (복합산화물이 형성된 API X80 라인파이프강의 용접열영향부 샤르피 흡수에너지)

  • Sung, Hyo Kyung;Shin, Sang Yong;Cha, Wooyeol;Oh, Kyungshik;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.875-883
    • /
    • 2010
  • This study assessed the Charpy impact properties of the heat-affected zones (HAZs) of API X80 linepipe steels containing complex oxides. Three types of steel were fabricated by adding Mg and $O_2$ to form complex oxides and their microstructures and Charpy impact properties were investigated. The number of complex oxides increased with the amount of excess Mg and $O_2$ that was included in the steels. Simulated HAZs containing a number of oxides showed a high volume fraction of acicular ferrite (AF) because the oxides acted as nucleation sites for AF, thereby leading to an improvement in the Charpy impact properties. According to a correlation study between the heat input, the volume fraction of the AF, and the Charpy impact properties, ductile fractures occurred predominantly when the fraction of the AF was 20% or higher; moreover, the Charpy absorbed energy was excellent at more than 100 J. These findings suggest that the improvement of the Charpy impact properties of the HAZs was associated with the active nucleation of AF in the oxide-containing steel HAZs.

A Study on the Determination of Fracture Parameters for Rubber Toughened Polymeric Materials Using on Instrumented Charpy Impact Test (계장화 샤르피충격시험기를 이용한 고무보강 폴리머재료의 파괴인자 결정에 관한연구)

  • Park, Myeong-Gyun;Choe, Yeong-Sik;Park, Se-Man;Yang, Jin-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1520-1526
    • /
    • 2002
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical dynamic strain energy release rates(G$\_$c/) from the Charpy impact energy measurements. An instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture energies and maximum critical loads. The dynamic stress intensity factor Kid was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

Evaluation of Fracture Toughness of Pressure Vessel Steel Using Charpy Impact Test Specimens (Charpy 충격시편을 이용한 압력용기 재료의 파괴인성 측정)

  • Han, Dae-June;Park, Sun-Pil
    • Nuclear Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 1987
  • The fracture toughness of SA 533 Grade B Class 1 steel has been studied with the Charpy impact test specimens in a range of temperature between -4$0^{\circ}C$ and 288$^{\circ}C$. The dynamic fracture toughness is measured by the instrumented precracked Charpy impact test while the static fracture toughness is by the 3-point bend test based on the unloading compliance method. The results are compared with the data obtained from the large specimens. It is known through the studies that temperature dependence of the appropriate (a low bound) value of the fracture toughness can be estimated by taking the static fracture toughness above the transition temperature and the dynamic fracture toughness below the temperature and it is also shown that the tests are satisfied with the requirements of ASTM E 813 when the side-groove is more than 14%.

  • PDF

A study on the Dynamic Fracture Toughness for Polymeric Materials (폴리머재료의 파괴인성치에 관한 연구)

  • 최영식;박명균
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.311-317
    • /
    • 2001
  • The notched Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy Impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

A study on the Determination of Fractuye Parameters for Rubber Toughened Polymeric Materials Using Instrumented Charpy Impact Test (샤피충격시험기를 이용한 고무보강 폴리머재료의 파괴인자 결정에 관한연구)

  • Choi, Young-Sic;Park, Myung-Kyun;Bahk, S.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.389-394
    • /
    • 2001
  • The notched Charpy and Izod impact tests arc the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

Effect of Carbon and Nickel on Microstructure and Low Temperature Charpy Impact Properties of HSLA Steels (HSLA 강의 미세조직과 저온 샤르피 충격 특성에 미치는 탄소와 니켈의 영향)

  • Eom, Haewon;Cho, Sung Kyu;Cho, Young Wook;Shin, Gunchul;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.184-196
    • /
    • 2020
  • In this study, effects of carbon and nickel on microstructure and low temperature Charpy impact properties of HSLA (high strength low alloy) steels are investigated. To understand the complex phase transformation behavior of HSLA steels with high strength and toughness before and after welding processes, three kinds of HSLA steels are fabricated by varying the carbon and nickel content. Microstructure analysis, low temperature Charpy impact test, and Vickers hardness test are performed for the base metals and CGHAZ (coarse-grain heat affected zone) specimens. The specimens with the lowest carbon and nickel content have the highest volume fraction of AF, the lowest volume fraction of GB, and the smallest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the highest. The specimens with increased carbon and nickel content have the lowest volume fraction of AF, the highest volume fraction of GB, and the largest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the lowest.

Evaluation of the Applicability of Structural Steels to Cold Regions by the Charpy Impact Test (샤르피 충격시험을 통한 구조용강재의 극한지 적용성 검토)

  • Lee, Chin-Hyung;Shin, Hyun-Seop;Park, Ki-Tae;Yang, Seunng-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.483-491
    • /
    • 2011
  • The fabrication of steel structural members always involves welding process such as flux cored arc welding. Therefore, for the application of structural steels to cold regions, it is a prerequisite to clarify the service temperature of the welded joints in order to ensure the structural integrity of the welded parts. In this study, the Charpy impact test was conducted to evaluate the service temperature of structural steel weld. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The service temperatures of the weld metal, HAZ (heat affected zone) and base metal were derived by the absorbed energy and the impact test requirements; thus the applicability of the structural steels to cold regions was discussed in detail.