DOI QR코드

DOI QR Code

Effect of Carbon and Nickel on Microstructure and Low Temperature Charpy Impact Properties of HSLA Steels

HSLA 강의 미세조직과 저온 샤르피 충격 특성에 미치는 탄소와 니켈의 영향

  • Eom, Haewon (Department of Convergence Technology for Heavy Industries, University of Ulsan) ;
  • Cho, Sung Kyu (Technical Research Center, Hyundai Steel Company) ;
  • Cho, Young Wook (Technical Research Center, Hyundai Steel Company) ;
  • Shin, Gunchul (School of Materials Science and Engineering, University of Ulsan) ;
  • Kwon, Yongjai (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jung Gu (School of Materials Science and Engineering, University of Ulsan) ;
  • Shin, Sang Yong (Department of Convergence Technology for Heavy Industries, University of Ulsan)
  • 엄해원 (울산대학교 중공업융합기술공학과) ;
  • 조성규 (현대제철 R&D Center) ;
  • 조영욱 (현대제철 R&D Center) ;
  • 신건철 (울산대학교 첨단소재공학부) ;
  • 권용재 (울산대학교 첨단소재공학부) ;
  • 이정구 (울산대학교 첨단소재공학부) ;
  • 신상용 (울산대학교 중공업융합기술공학과)
  • Received : 2020.01.21
  • Accepted : 2020.03.26
  • Published : 2020.04.27

Abstract

In this study, effects of carbon and nickel on microstructure and low temperature Charpy impact properties of HSLA (high strength low alloy) steels are investigated. To understand the complex phase transformation behavior of HSLA steels with high strength and toughness before and after welding processes, three kinds of HSLA steels are fabricated by varying the carbon and nickel content. Microstructure analysis, low temperature Charpy impact test, and Vickers hardness test are performed for the base metals and CGHAZ (coarse-grain heat affected zone) specimens. The specimens with the lowest carbon and nickel content have the highest volume fraction of AF, the lowest volume fraction of GB, and the smallest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the highest. The specimens with increased carbon and nickel content have the lowest volume fraction of AF, the highest volume fraction of GB, and the largest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the lowest.

Keywords

References

  1. J. C. Kim, Y. C Suh, S. D. Hwang and S. Y. Shin, Korean J. Mater. Res., 28, 478 (2018). https://doi.org/10.3740/MRSK.2018.28.8.478
  2. T. C. Cheng, C. Yu, T. C. Yang, C. Y. Huang, H. C. Lin and R. K. Shiue, Arch. Metall. Mater., 63, 167 (2018).
  3. Y. L. Zhou, T. Jia, X. J. Zhang, Z. Y. Liu and R. D. K. Misra, Mater. Sci. Eng. A, 626, 352 (2015). https://doi.org/10.1016/j.msea.2014.12.074
  4. D. S. Liu, Q. L. Li and T. Emi, Metall. Mater. Trans. A, 42, 1349 (2011). https://doi.org/10.1007/s11661-010-0458-1
  5. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, 9th ed., p.432, John Wiley & Sons, Inc., New York (2015).
  6. K. Easterling, Introduction to the Physical Metallurgy of Welding, 2nd ed. p.126, Butterworth Heinemann, Oxford (1992).
  7. Y. Li, D. N. Crowther, M. J. W. Green, P. S. Mitchell and T. N. Baker, ISIJ Int., 41, 46 (2001). https://doi.org/10.2355/isijinternational.41.46
  8. A. D. Schino and P. E. D. Nunzio, Mater. Lett., 186, 86 (2017). https://doi.org/10.1016/j.matlet.2016.09.092
  9. M. Hamada, Y. Fukada and Y. Komiz, ISIJ Int., 35, 1196 (1995). https://doi.org/10.2355/isijinternational.35.1196
  10. S. F. Medina, M. Chapa, P. Valles, A. Quispe and M. I. Vega, ISIJ Int., 39, 930 (1999). https://doi.org/10.2355/isijinternational.39.930
  11. M. Chapa, S. F. Medina, V. Lopez, and B. Fernandez, ISIJ Int., 42, 1288 (2002). https://doi.org/10.2355/isijinternational.42.1288
  12. A. D. Schino and C. Guarnaschelli, Mater. Lett., 63, 1968 (2009). https://doi.org/10.1016/j.matlet.2009.06.032
  13. A. D. Schino, L. Alleva and M. Guagnelli, Mater. Sci. Forum, 860, 715 (2012).
  14. C. Yu, T. C. Yang, C. Y. Huang and R. K. Shiue, Metall. Mater. Trans. A, 47A, 4777 (2016).
  15. S. K. Dhua, D. Mukerjee and D. S. Sarma, Metall. Mater. Trans. A, 32A, 2259 (2001).
  16. B. Hwang, C. G. Lee and S. J. Kim, Metall. Mater. Trans. A, 42A, 717 (2011).
  17. T. C. Yang, C. Y. Huang, T. C. Cheng, C. Yu and R. K. Shiue, Adv. Mater. Res., 936, 1312 (2014). https://doi.org/10.4028/www.scientific.net/AMR.936.1312
  18. G. Heigl, H. Lengauer and P. Hodnik, Steel Res. Int., 79, 931 (2008). https://doi.org/10.1002/srin.200806223
  19. T. N. Baker, Mater. Sci. Technol., 25, 1083 (2009). https://doi.org/10.1179/174328409X453253
  20. W. Yan, Y. Y. Shan and K. Yang, Metall. Mater. Trans. A, 37, 2147 (2006). https://doi.org/10.1007/BF02586135
  21. K. Hulka, A. Kern and U. Schriever, Mater. Sci. Forum, 500, 519 (2005). https://doi.org/10.4028/www.scientific.net/msf.500-501.519
  22. M. Shome, D. S. Sarma, O. P. Gupta and O. N. Mohanty, ISIJ Int., 43, 1431 (2003) https://doi.org/10.2355/isijinternational.43.1431
  23. H. K. Sung, S. Y. Shin, B. C. Hwang, C. G. Lee, N. J. Kim and S. H. Lee, Mater. Sci. Eng., A, 530, 530 (2011). https://doi.org/10.1016/j.msea.2011.10.015
  24. M. Shome, O. P. Gupta and O. N. Mohanty, Metall. Mater. Trans. A, 35A, 985 (2004).
  25. S. G. Lee, D. H. Lee, S. S. Sohn, W. G. Kim, K. K. Um, K. S. Kim and S. H. Lee, Mater. Sci. Eng., A, 697, 55 (2017). https://doi.org/10.1016/j.msea.2017.04.115
  26. S. K. Cho, H. G. Joo and S. Y. Shin, Korean J. Mater. Res., 29, 221 (2019). https://doi.org/10.3740/MRSK.2019.29.4.221
  27. Offshore Standards for Design of Offshore Steel Structures, General-LRFD method, DNVGL-OS-C101, DNV.GL, p.1-85 (2011).
  28. T. Araki, Atlas for Bainitic Microstructure, p. 1, ISIJ, Tokyo, Japan (1992).
  29. G. Krauss and S. W. Thompson, ISIJ Int., 35, 937 (1995). https://doi.org/10.2355/isijinternational.35.937
  30. H. K. D. H. Bhadeshia, Mater. Sci. Eng., A, 378, 34 (2004). https://doi.org/10.1016/j.msea.2003.10.328
  31. D. Deng and S. Kiyoshima, Comp. Mater. Sci., 62, 23 (2012). https://doi.org/10.1016/j.commatsci.2012.04.037
  32. H. Qiu, M. Enoki, Y. Kawaguchi and T. Kishi, ISIJ Int., 40, 34 (2000). https://doi.org/10.2355/isijinternational.40.Suppl_S34
  33. K. W. Andrews, J. Iron Steel Inst., 2037, 721 (1965).
  34. C. Y. Kung and J. J. Rayment, Metall. Trans. A, 13A, 328 (1982).
  35. J. S. Kirkaldy and D. Venugopalan, Proc. Int. Conf. on Phase Transformation in Ferrous Alloys, pp.125-148, eds. A. R. Marder, J. I. Goldstein, Metall. Soc. of AIME, Philadelphia (1983).
  36. J. K. Brimacombe, Can. Metall. Q., 15, 163 (1976). https://doi.org/10.1179/cmq.1976.15.2.163
  37. B. G. Thomas, I. V. Samarasekera and J. K. Brimacombe, Metall. Trans. B, 15B, 307 (1984).
  38. B. G. Thomas, I. V. Samarasekera and J. K. Brimacombe, Metal. Trans. B, 18B, 131 (1987).
  39. B. C. Kim, S. Lee, N. J. Kim and D. Y. Lee, Metall. Trans. A, 22A, 139 (1991).
  40. N. Yurioka, Weld. World, 35, 375 (1995).
  41. G. Huang, X. L. Wan, K. M. Wu, H. Z. Zhao and R. D. K. Misra, Metals, 8, 718 (2018). https://doi.org/10.3390/met8090718
  42. D. A. Porter, K. E. Easterling and M. Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed., pp.240-247, Taylor & Francis Group, Abingdon-on-Thames, New York (2008).
  43. H. Zhao and E. Palmiere, Mater. Charac., 145, 479 (2018). https://doi.org/10.1016/j.matchar.2018.09.013
  44. V. Biss and R. L. Cryderman, Metal. Trans., 2, 2267 (1971). https://doi.org/10.1007/BF02917559
  45. H. J. Jun, J. S. Kang and C. G. Park, Mat. Sci. Eng., accepted at 2nd May 2005.