• Title/Summary/Keyword: charging density

Search Result 178, Processing Time 0.028 seconds

Electrical Properties of (Pb, LaITiO$_3$ Thin Films fabricated by Sol-Gel Processing (Sol-Gel 법에 의한 (Pb, La)TiO$_3$ 박막의 전기적 특성)

  • 구본혁;박정흠;장낙원;마석범;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.48-51
    • /
    • 1997
  • (Pb. La)TiO$_3$ thin films were fabricated by sol-gel Processing and spin-coated on the Pt substrate. The spin-coated PLT films were sintered at 75$0^{\circ}C$ for 5min by rapid thermal ann La content dependence of the electrical properties of the PLT thin films are discussed. Wit La mole% from 20 to 36mo1e%. the dielectric constant of the PLT thin films decreased f 570. P-E hysteresis loops changed from ferroelectric to paraelectric. and the charge storage charging time decreased. The Curie Point decreased with increasing La content. The leak density also decreased and La 36mo1% species shows mood characteristics less than 10- electric field 500 (KV/cm) Because of the broad range of composition-controlled ferroelectric PLT thin films are suitable for memory application.

  • PDF

Two-Stage Inductive Power Transfer Charger for Electric Vehicles (전기자동차 충전기용 2-Stage 자기유도 무선전력전송 시스템)

  • Kim, Min-Jung;Joo, Dong-Myoung;Ann, Sang-Joon;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.134-139
    • /
    • 2017
  • In this study, an inductive power transfer (IPT) charger for electric vehicles is proposed to improve the entire system efficiency and power density by eliminating the DC-DC converter in the secondary side. In the proposed IPT charger, the DC-link voltage is adjusted according to the coupling coefficient through cascade buck-boost converter in the front-end side, and the bridgeless rectifier performs the charging of battery. The control algorithm for the proposed IPT system is theoretically explained, and the validity of the proposed system is verified by informative simulation.

Charge retention characteristics of silicon nanocrystals embedded in $SiN_x$ layer for non-volatile memory devices (비휘발성 메모리를 위한 실리콘 나노 결정립을 가지는 실리콘 질화막의 전하 유지 특성)

  • Koo, Hyun-Mo;Huh, Chul;Sung, Gun-Yong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.101-101
    • /
    • 2007
  • We fabricated floating gate non-volatile memory devices with Si nanocrystals embedded in $SiN_x$ layer to achieve higher trap density. The average size of Si nanocrystals embedded in $SiN_x$ layer was ranging from 3 nm to 5 nm. The MOS capacitor and MOSFET devices with Si nanocrystals embedded in $SiN_x$ layer were analyzed the charging effects as a function of Si nanocrystals size.

  • PDF

Case Study for the Improvement of Tunnel Advance Rate & the Time Reduction of Working Process in Long Hole Blasting About Tunnel Excavation (터널 장공발파에서 굴진율 개선 및 작업공정 시간 단축 사례)

  • Kim, Hee-Do;Lee, Jun-Won;Lee, Ha-Young
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.32-39
    • /
    • 2013
  • Generally, The way of long hole blasting is carried out in coal-face, basic excavation for dam, mine etc. Recently, this long hole blasting has been implemented in civil engineering for efficiency & economic feasibility. National express no.600 of Pusan outer high-express ${\bigcirc}$ construction site with four lanes of the length of 8km was also a site applied by long hole blasting. But After blasting, tunnel advance rate is less than 75%. As a result of that, Follow-up working time is influenced. Thereby, The total of working process is significantly so increased that planned excavation cannot be implemented many times. For not only improve excavation rate but reduce working process time in job site, we introduce blasting case which apply the ${\phi}36mm$ explosive suited for high desity of charging among long hole blasting in order to overcome mentioned problem.

The optimization of output coupler reflectivity of high repetitive pulsed Nd:YAG laser system adopted 3-mesh parallel sequential charge and discharge method (3단 병렬 충.방전 방식을 적용한 고반복 펄스형 Nd:YAG 레이저 출력거울 반사율의 최적화)

  • 김휘영;홍수열;김동수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.369-376
    • /
    • 2001
  • The optimization of resonator and laser power supply has been considered to be significant for improving the efficiency of a pulsed Nd:YAG laser system. We have proposed a new method of 3-mesh parallel sequential charge and discharge circuit as a laser power supply; more compact than conventional power supply, competitive in price, easy to control the laser power density according to various material processing, and equipped with the optimum reflectivity of output coupler. In this study, we could find that the maximum laser output was obtained by using 85% of reflectivity in the case of 50[W]-class. In addition using the power supply of new method, it's possible to charge each capacitor bank with a higher energy within the given charging time adopted a new method mentioned above; namely, we can allow each capacitor to have much more charging time and storage energy. So, higher laser output was obtained than conventional power supply.

  • PDF

High-Voltage Liquid-Electrolyte Microbatteries Inspired from Electric Eels (전기뱀장어의 전기발생을 모사한 고전압 액체 전해질 미소전지)

  • Kim, Mun-Chul;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.469-473
    • /
    • 2009
  • We present high-voltage liquid-electrolyte microbatteries, inspired from the high-voltage generation mechanism of electric eels using serially connected multiple-cell arrays. In the microbatteries, we purge air into the electrolyte filled in a channel layer to isolate serially connected multiple cell arrays using three surface-tension valves (cell-front, outlet, and cell-end valves). Compared to the previous multi-cell stack or interconnection, present microbatteries provide a reduced multi-cell charging time. We have designed and characterized four different prototypes C1, C10, C20, and C40 having 1, 10, 20, and 40 cells, respectively. In the experimental study, the threshold pressures of cell-front, outlet, and cell-end valves were measured as $460{\pm}47$, $1,000{\pm}53$, and $2,800{\pm}170$ Pa, respectively. The average charging time for C40 was measured as $26.8{\pm}4.9$ seconds where the electrolyte and air flow-rates are 100 and $10{\mu}l/min$, respectively. Microbatteries showed the maximum voltage of 12 V (C40), the maximum power density of $110{\mu}W/cm^2$ (C40), and the maximum power capacity of $2.1{\mu}Ah/cm^2$ (C40). We also proposed a tapered-channel to remove the reaction gas from the cell chamber using a surface tension effect. The present microbatteries are applicable to high-voltage portable power devices.

중성빔 식각을 이용한 Metal Gate/High-k Dielectric CMOSFETs의 저 손상 식각공정 개발에 관한 연구

  • Min, Gyeong-Seok;O, Jong-Sik;Kim, Chan-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.287-287
    • /
    • 2011
  • ITRS(international technology roadmap for semiconductors)에 따르면 MOS (metal-oxide-semiconductor)의 CD(critical dimension)가 45 nm node이하로 줄어들면서 poly-Si/SiO2를 대체할 수 있는 poly-Si/metal gate/high-k dielectric이 대두되고 있다. 일반적으로 metal gate를 식각시 정확한 CD를 형성시키기 위해서 plasma를 이용한 RIE(reactive ion etching)를 사용하고 있지만 PIDs(plasma induced damages)의 하나인 PICD(plasma induced charging damage)의 발생이 문제가 되고 있다. PICD의 원인으로 plasma의 non-uniform으로 locally imbalanced한 ion과 electron이 PICC(plasma induced charging current)를 gate oxide에 발생시켜 gate oxide의 interface에 trap을 형성시키므로 그 결과 소자 특성 저하가 보고되고 있다. 그러므로 본 연구에서는 이에 차세대 MOS의 metal gate의 식각공정에 HDP(high density plasma)의 ICP(inductively coupled plasma) source를 이용한 중성빔 시스템을 사용하여 PICD를 줄일 수 있는 새로운 식각 공정에 대한 연구를 하였다. 식각공정조건으로 gas는 HBr 12 sccm (80%)와 Cl2 3 sccm (20%)와 power는 300 w를 사용하였고 200 eV의 에너지로 식각공정시 TEM(transmission electron microscopy)으로 TiN의 anisotropic한 형상을 볼 수 있었고 100 eV 이하의 에너지로 식각공정시 하부층인 HfO2와 높은 etch selectivity로 etch stop을 시킬 수 있었다. 실제 공정을 MOS의 metal gate에 적용시켜 metal gate/high-k dielectric CMOSFETs의 NCSU(North Carolina State University) CVC model로 effective electric field electron mobility를 구한 결과 electorn mobility의 증가를 볼 수 있었고 또한 mos parameter인 transconductance (Gm)의 증가를 볼 수 있었다. 그 원인으로 CP(Charge pumping) 1MHz로 gate oxide의 inteface의 분석 결과 이러한 결과가 gate oxide의 interface trap양의 감소로 개선으로 기인함을 확인할 수 있었다.

  • PDF

Embedding Cobalt Into ZIF-67 to Obtain Cobalt-Nanoporous Carbon Composites as Electrode Materials for Lithium ion Battery

  • Zheng, Guoxu;Yin, Jinghua;Guo, Ziqiang;Tian, Shiyi;Yang, Xu
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.458-464
    • /
    • 2021
  • Lithium ion batteries (LIBs) is a kind of rechargeable secondary battery, developed from lithium battery, lithium ions move between the positive and negative electrodes to realize the charging and discharging of external circuits. Zeolitic imidazolate frameworks (ZIFs) are porous crystalline materials in which organic imidazole esters are cross-linked to transition metals to form a framework structure. In this article, ZIF-67 is used as a sacrificial template to prepare nano porous carbon (NPC) coated cobalt nanoparticles. The final product Co/NPC composites with complete structure, regular morphology and uniform size were obtained by this method. The conductive network of cobalt and nitrogen doped carbon can shorten the lithium ion transport path and present high conductivity. In addition, amorphous carbon has more pores that can be fully in contact with the electrolyte during charging and discharging. At the same time, it also reduces the volume expansion during the cycle and slows down the rate of capacity attenuation caused by structure collapse. Co/NPC composites first discharge specific capacity up to 3115 mA h/g, under the current density of 200 mA/g, circular 200 reversible capacity as high as 751.1 mA h/g, and the excellent rate and resistance performance. The experimental results show that the Co/NPC composite material improves the electrical conductivity and electrochemical properties of the electrode. The cobalt based ZIF-67 as the precursor has opened the way for the design of highly performance electrodes for energy storage and electrochemical catalysis.

Development of Binder Materials for Si-based Anode in Lithium-ion Batteries (리튬이온전지 실리콘계 음극 바인더 소재 개발)

  • Jihee, Yoon;Jung-Keun, Yoo
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.365-370
    • /
    • 2022
  • According to the rapid growth of electric vehicle (EVs) and E-mobility market, Li-ion batteries are one of the most progressive technologies. The demand of LIBs with high energy capacity, rate performance and fast charging is continuously increasing, hence high-performance LIBs should be developed. Si is considered as the most promising anode material to improve energy density because of its high theoretical capacity. However, Si suffers large volume chances during the charging and discharge process, leading to the fast degradation of cycle performance. Therefore, polymeric binders play a key role in electrochemical performance of Si anode by efficiently enduring the Si expansion and maintaining the binding networks in electrode. In this review, we explain the role of polymeric binders in electrode and introduce the anode binders with enhanced mechanical and chemical properties which can improve electrochemical performances of Si-based anode.

Characteristic Analysis of Lithium-ion Battery and Lead-acid Battery using Battery Simulator (배터리 시뮬레이터를 이용한 리튬이온 배터리와 납축전지 특성분석)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2024
  • Recently, secondary batteries, commonly known as rechargeable batteries, find widespread applications across various industries. Particularly valued for their compact and lightweight characteristics, they play a crucial role in diverse portable electronic devices such as smartphones, laptops, and tablets, offering high energy density and efficient charge-discharge capabilities. Moreover, they serve as vital components in electric vehicles and contribute significantly to the field of renewable energy as part of Energy Storage Systems(ESS). However, despite advancements in this technology, issues such as reduced lifespan, cracking, damage, and even the risk of fire can arise due to excessive charging and discharging of secondary batteries. To address these challenges, Battery Management System(BMS) are employed to protect against overcharging and improve overall performance. Nevertheless, understanding the protective range settings of BMS using lithium-ion batteries, the most commonly used secondary batteries, and lead-acid batteries can be challenging. Therefore, this paper aims to utilize a battery charge-discharge tester and simulator to investigate the charging and discharging characteristics of lithium-ion batteries and lead-acid batteries, addressing the associated challenges of reduced lifespan, cracking, damage, and fire hazards in secondary batteries.