• Title/Summary/Keyword: charge transport

Search Result 473, Processing Time 0.024 seconds

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

Controlling the Properties of Graphene using CVD Method: Pristine and N-doped Graphene (화학기상증착법을 이용한 그래핀의 물성 조절: 그래핀과 질소-도핑된 그래핀)

  • Park, Sang Jun;Lee, Imbok;Bae, Dong Jae;Nam, Jungtae;Park, Byung Jun;Han, Young Hee;Kim, Keun Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.169-174
    • /
    • 2015
  • In this research, pristine graphene was synthesized using methane ($CH_4$) gas, and N-doped graphene was synthesized using pyridine ($C_5H_5N$) liquid source by chemical vapor deposition (CVD) method. Basic optical properties of both pristine and N-doped graphene were investigated by Raman spectroscopy and XPS (X-ray photoemission spectroscopy), and electrical transport characteristics were estimated by current-voltage response of graphene channel as a function of gate voltages. Results for CVD grown pristine graphene from methane gas show that G-peak, 2D-peak and C1s-peak in Raman spectra and XPS. Charge neutral point (CNP; Dirac-point) appeared at about +4 V gate bias in electrical characterization. In the case of pyridine based CVD grown N-doped graphene, D-peak, G-peak, weak 2D-peak were observed in Raman spectra and C1s-peak and slight N1s-peak in XPS. CNP appeared at -96 V gate bias in electrical characterization. These result show successful control of the property of graphene artificially synthesized by CVD method.

Development of Traffic Accident Index Considering Driving Behavior of a Data Based (데이터 기반의 도로구간별 운전자의 통행행태를 고려한 교통사고지표 개발)

  • LEE, Soongbong;CHANG, Hyunho;CHEON, Seunghoon;BAEK, Seungkirl;LEE, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.4
    • /
    • pp.341-353
    • /
    • 2016
  • Highway is mainly in charge of middle-long distance of vehicular travel. Trip length has shown a growing trend due to increased commute distances by the relocation of public agencies. For this reason, the proportion of driver-driven accidents, caused by their fatigue or sleepiness, are very high on highways. However, existing studies related to accident prediction have mainly considered external factors, such as road conditions, environmental factors and vehicle factors, without driving behavior. In this study, we suggested an accident index (FDR, Fatigued Driving Rate) based on traffic behavior using large-scale Car Navigation path data, and exlpored the relationship between FDR and traffic accidents. As a result, FDR and traffic accidents showed a high correlation. This confirmed the need for a paradigm shift (from facilities to travel behavior) in traffic accident prediction studies. FDR proposed in this study will be utilized in a variety of fields. For example, in providing information to prevent traffic accidents (sleepiness, reckless driving, etc) in advance, utilization of core technologies in highway safety diagnostics, selection of priority location of rest areas and shelter, and selection of attraction methods (rumble strips, grooving) for attention for fatigued sections.

Development of Novel Materials for Reduction of Greenhouse Gases and Environmental Monitoring Through Interface Engineering

  • Hirano, Shin-Ichi;Gang, Seok-Jung L.;Nowotny, Janusz-Nowotny;Smart, Roger-St.C.Smart;Scrrell, Charles-C.Sorrell;Sugihara, Sunao;Taniguchi, Tomihiroi;Yamawaki, Michio;Yoo
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.635-653
    • /
    • 1999
  • The present work considers work considers research strategies to address global warming. Specifically, this work considers the development of technologies of importance for the reduction of greenhouse gas emission and, especially, the materials that are critical to these technologies. It is argued that novel materials that are essential for the production of environmentally friendly energy may be developed through a special kind of engineering: interface engineering, rather than through classical bulk chemistry. Progress on the interface engineering requires to increase the present state of understanding on the local properties of materials interfaces and interfaces processes. This, consequently, requires coordinated international efforts in order to establish a strong background in the science of materials interfaces. This paper considers the impact of interfaces, such as surfaces and grain boundaries, on the functional properties of materials. This work provides evidence that interfaces exhibit outstanding properties that are not displayed by the bulk phase. It is shown that the local interface chemistry and structure and entirely different than those of the bulk phase. In consequence the transport of both charge and matter along and across interfaces, that is so important for energy conversion, is different than that in the bulk. Despite that the thickness of interfaces is of an order to a nanometer, their impact on materials properties is substantial and, in many cases, controlling. This leads to the conclusion that the development of novel materials with desired properties for specific industrial applications will be possible through controlled interface chemistry. Specifically, this will concern materials of importance for energy conversion and environmental monitoring. Therefore, there is a need to increase the present state of understanding of the local properties of materials interfaces and the relationship between interfaces and the functional properties of materials. In order to accomplish this task coordinated international efforts of specialized research centres are required. These efforts are specifically urgent regarding the development of materials of importance for the reduction of greenhouse gases. Success of research in this area depends critically on financial support that can be provided for projects on materials of importance for a sustainable environment, and these must be considered priorities for all of the global economies. The authors of the present work represent an international research group economies. The authors of the present work represent an international research group that has entered into a collaboration on the development of the materials that are critical for the reduction of greenhouse gas emissions.

  • PDF

A Study of the DB Design Standard for Submitting Completion Drawings for Auto-Renewal of Underground Facility Information (지하시설물정보 자동갱신을 위한 준공도서 제출 표준DB 설계 연구)

  • Park, Dong Hyun;Jang, Yong Gu;Ryu, Ji Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.681-688
    • /
    • 2020
  • The Under Space Integrated Map has been constructed consistently from '15 construction projects until the present time in an effort to implement the "ground sinking prevention method" for the purpose of strengthening underground safety management. The constructed Under Space Integrated Map is utilized to provide information to the person in charge at local government through application of the system of underground information based on the administrative network and to deliver this to specialized underground-safety-effects -evaluation organizations through map extraction based on a floor plan. It suffers from a limitation in its practical use, however, since information is only provided, without promoting a separate renewal project. Although in Section 1 of Article 42 in the Special Law Concerning Underground Safety Management the content pertaining to submission obligations of completion drawings related to underground information including change and renewal are stated explicitly in order to solve this problem, submission is not sufficient since a submission window based only on the administrative network is operated. Accordingly, the Ministry of Land, Infrastructure, and Transport constructed an online system for submitting completion drawings, in an attempt to change the method by which entities involved in underground development directly submitted completion drawings. In this study, a DB standard relating to submitting completion drawings was designed and applied in order to construct an auto-renewal system based on submitted completion drawings, which will be extended to cover the range to underground structures hereafter.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

Electrode Characteristics of K+ Ion-Selective PVC Membrane Electrodes with AC Impedance Spectrum (AC 임피던스 분석법을 이용한 K+ 이온선택성 PVC막 전극 특성)

  • Kim, Yong-Ryul;An, Hyung-Hwan;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.870-877
    • /
    • 1998
  • With impedance spectrum measurements, impedance was studied in the interface between sample solutions for $K^+-ion$ selective PVC membrane electrode containing neutral carriers [dibenzo-18-crown-6 (D18Cr6) and valinomycine (Val)]. Response characteristics of electrode were examined by measuring AC impedance spectra that were resulted from the chemical structure and the content of carrier, variation of plasticizer, membrane thickness, doping of base electrolytes, and concentration variation of sample solution. Transport characteristics of PVC membrane electrode were also studied. It was found that the equivalent circuit for the membrane in $K^+$ solution could be expressed by a series combination of solution resistance and a parallel circuit consisting of the bulk resistance and geometric capacitance of the membrane system. But the charge transfer resistance and Warburg resistance were overlapped a little in the low concentration and low frequency ranges. The carrier, D18Cr6 was best for electrode and impedance characteristics, and ideal electrode characteristics were appeared especially in case of doping of the base electrolyte[potassium tetraphenylborate(TPB)]. The optimum carrier content was about 3.23 wt% in case of D18Cr6 and Val. DBP was best as a plasticizer. As membrane thickness decreased the impedance characteristics was improved, but electrode characteristics were lowered for membrane thickness below the optimum. In the case of D18Cr6, the selectivity coefficients by the mixed solution method for the $K^+$ ion were the order of $NH_4{^+}>Ca^{2+}>Mg^{2+}>Na^+$.

  • PDF

Objectives and Contents of Basic Medical Sciences in Nursing Education (간호학 교육에서 기초의과학 교과목별 목표와 내용에 대한 연구)

  • 최명애;신기수
    • Journal of Korean Academy of Nursing
    • /
    • v.29 no.6
    • /
    • pp.1455-1468
    • /
    • 1999
  • The purpose of this study was to investigate the objectives and contents of basic medical sciences at department of nursing in college of nursing, and junior college of nursing, thus ultimately providing the basic data to standardize the curriculum of the basic medical sciences in nursing education. Seventy eight professors who were in charge of teaching basic medical sciences to at 22 colleges of nursing/ department of nursing, and 20 junior colleges of nursing responded to the questionnaires that consisted of the questions regarding objectives and contents, of basic medical sciences. Based on the description of objectives, the description related to nursing, nurse, nursing science was cathegorized as on objective applicable to nursing science, the description related to medicine or clinical medicine as medical model, the description without description related to medicine was cathegorized as knowledge acquisition. The number of schools corresponding to each category were summerized in descending order. The objectives of basic medical sciences were categorized by concepts and number of schools corresponding to the categorized concept. The findings of the study are as follows ; 1. The subjects of basic medical science identified were physiology, anatomy, biochemistry, pathology, microbiology, and pharmacology in most colleges of nursing and junior colleges. Two colleges of nursing/department of nursing (9.1%) and 19 junior colleges of nursing(95%) did not offer biochemistry, 1 college of nursing /department of nursing(5%) did not offer pathology & pharmacology. 2 junior colleges of nursing (10%) did not offer pharmacology, 1 junior college of nursing(5%) did not offer pathology. The other 1 junior college of nursing did not offer microbiology. 2. Objectives of physiology were to acquire knowledge and understanding on human function in both 6 (50%) colleges and 5 junior colleges. Objectives of anatomy were to acquire knowledge on human structure in both 4 (57%) colleges and 2 (50%) junior colleges; knowledge applicable to nursing sciences in both 3 (42.8%) colleges and 2 (50%) junior colleges. Objectives of biochemistry was to obtain knowledge and understanding on biochemistry, and understanding of basic concepts about biochemistry. Objectives of pathology were to obtain knowledge and understanding on pathology in both 4 (57.1%) colleges and 5(62.5%) junior colleges. Objectives of microbiology were to acquire knowledge and understanding on microbiology in both 5(83.8%) colleges and 6(85.7%) junior colleges. Objectives of pharmacology were to acquire knowledge on pharmacology in both 7(100%) colleges and 8(100%) junior colleges. 3. Contents of physiology in 19 (100%) schools were membrane transport, digestion, circulation, nervous system and respiration. In 16(84.2%) were kidney and muscle, that in 13(68.4%) were endocrine physiology. In 11(57.9%) were introduction and that in 9(47.4%) were structure and function of cells. Contents of anatomy in 11(100%) schools were skeletal system, muscle system, digestive system, circulatory system, concepts regarding human structure. In 10(90.9%) schools were endocrine system and nervous system, and in 5(45.5%) schools were blood, urinary system and cell. Contents of biochemistry in 6(100%) schools were history of biochemistry, body regulating factor, bioenergy, health and nutrition, nutrition of cell, energy production system. In 5(83.3%) schools were metabolism of protein and carbohydrate and enzyme, and in 3(50%) schools were metabolism of energy and fat. Contents of microbiology in 13(100%) schools were environment and influenc of bacteria, virus, G(-) rods, purulent cocci, G(+) rods. In 10 (76.9%) were immunity, diphtheria, enterobacteria, and in 9(69.2%) were spirochete, rickettsia and clamydia, and that in 6(46.2%) were sterilization and disinfection. Contents of pathology in 14(100%) schools were cell injury and adaptation, inflammation, respiratory diseases, circulatory diseases. In 10(71.4%) were neurological disorders, in 8(57.1%) were immunity and disease, and in 7 (50%) were tumor and progressive changes. Contents of pharmacology in 15(100%) were cardivascular drugs, introduction to pharmacology, hypnotics, analgesics, local anesthetics, an ticonvulsants. In 12(80%) were drugs activity on sympathetic and parasympathetic nervous system, and in 11(73%) were sulfa drugs, antibiotics, drug abuse and addiction.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.