• Title/Summary/Keyword: charge sensor

Search Result 304, Processing Time 0.032 seconds

Region-adaptive Smear Removal Method Using Optical Black Region for CCD Sensors (광학암흑영역을 이용한 CCD 센서의 영역 적응적 스미어 제거 방식)

  • Han, Young-Seok;Song, Ki-Sun;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.107-116
    • /
    • 2010
  • Smear is a phenomenon that occurs when an extremely strong light source appears in the imaging system with CCD sensor. It occurs due to the signal charge transfer of CCD and appears as bright lines of noise emanating vertically (or horizontally) from the light source. For still images, smear can be reduced by using a mechanical shutter or special drive methods, but these techniques cannot be applied to image sequences. In this paper, we propose a smear removal method that can be applied to imaging systems for not only still images but also image sequences. The proposed method uses the optical black region(OBR) which is a group of pixels located in the boundary of CCD imaging sensors. Although the OBR is not exposed to light, it contains smear information caused by the charge transport. First, noise and the smear signal in the OBR is separated, and noise is removed to correctly estimate smear effect. Then, corrected OBR signal is uniformly subtracted to eliminate smear effect. Also, if saturation is occurred, the current pixel is substituted by weighted summation of neighboring pixels to improve the visual degradation. Experimental results show that the proposed algorithm outperforms the conventional methods.

Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications (층상자기조립법을 이용한 나노구조체의 제조와 응용)

  • Cho, Jin-Han
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with antireflective properties. Protonated polystyrene-block-poly (4-vinylpyrine) (PS-b-P4VP) and anionic polystyrene-block-poly (acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the oppositely BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (Mw) of the constituents. PS7K-b-P4VP28K/PS2K-b-PAA8K films prepared at pH 4 (for PS7K-b-P4VP28K) and pH 6 (for PS2K-b-PAA8K) are highly nanoporous and antireflective. In contrast, PS7K-b-P4VP28K/PS2K-b-PAA8K films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS2K-b-PAA8K. Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS36K-b-P4VP12K/PS16K-b-PAA4K at pH 4/4) were also nanoporous. Furthermore, we demonstrate that the nanostructured electrochemical sensors based on patterning methods show the electrochemical activities. Anionic poly(styrene sulfonate) (PSS) layers were selectively and uniformly deposited onto the catalase (CAT)-coated surface using the micro-contact printing method. The pH-induced charge reversal of catalase can provide the selective deposition of consecutive PE multilayers onto patterned PSS layers by causing the electrostatic repulsion between next PE layer and catalase. Based on this patterning method, the hybrid patterned multilayers composed of platinum nanoparticles (PtNP) and catalase were prepared and then their electrochemical properties were investigated from sensing $H_2O_2$ and NO gas. This study was based on the papers reported by our group. (J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007)).

Implementation of High Efficiency Generators Applicable to Climbing Sticks (등산스틱에 적용 가능한 고효율 발전기 구현)

  • Gul-Won Bang
    • Journal of Industrial Convergence
    • /
    • v.22 no.7
    • /
    • pp.15-21
    • /
    • 2024
  • A hiking stick is generally one of the walking aids that allow hikers to walk while relying on their own bodies when walking. A rechargeable battery must be built into the hiking stick, which is an auxiliary device, in order to perform various functions. A separate power supply is required to charge the rechargeable battery. This study is about a self-generated power supply and develops a power generation device using a screw with higher power generation efficiency than the existing method. It is differentiated from the method suggested in this study by comparing and analyzing it with the existing power generation method, and identifying problems therewith. The screw-type power generation device generates power when the climbing stick comes into contact with the ground and when it is separated from the ground. The built-in power generation device does not require a separate power supply, and it can be used by attaching the role of a mobile phone auxiliary battery and a lighting lamp, and it has the effect of being able to find it through location tracking by embedding a GPS sensor, etc., and using lighting to keep the user safe in emergency situations such as distress. The existing generator with built-in mountain climbing stick is difficult to charge due to very weak current and low practicality, but the generator developed in this research could achieve high efficiency to obtain a sufficient current, so it is possible to charge a battery and practicality.

ELA: Real-time Obstacle Avoidance for Autonomous Navigation of Variable Configuration Rescue Robots (ELA: 가변 형상 구조로봇의 자율주행을 위한 실시간 장애물 회피 기법)

  • Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.186-193
    • /
    • 2008
  • We propose a novel real-time obstacle avoidance method for rescue robots. This method, named the ELA(Emergency Level Around), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward safe position. In the ELA, we consider two sensor modules, PSD(Position Sensitive Detector) infrared sensors taking charge of obstacle detection in short distance and LMS(Laser Measurement System) in long distance respectively. Hence if a robot recognizes an obstacle ahead by PSD infrared sensors first, and judges impossibility to overcome the obstacle based on driving mode decision process, the order of priority is transferred to LMS which collects data of radial distance centered on the robot to avoid the confronted obstacle. After gathering radial information, the ELA algorithm estimates emergency level around a robot and generates a polar histogram based on the emergency level to judge where the optimal free space is. Finally, steering angle is determined to guarantee rotation to randomly direction as well as robot width for safe avoidance. Simulation results from wandering in closed local area which includes various obstacles and different conditions demonstrate the power of the ELA.

  • PDF

Micromachined DNA Manipulation Device Using Circular Multi-Electrodes (원형 다중전극을 이용한 DNA 조작소자)

  • Moon, Sang-Jun;Yun, Jae-Young;Lee, Seung-S.;Nam, Hong-Kil;Chi, Yeun-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1071-1075
    • /
    • 2003
  • In this paper, we present a DNA manipulation device in the reaction chamber, which consists of a center electrode and circular outer electrodes of a reaction unit. The charged bio-molecules, DNA, are manipulated by the charge of the electrode in reaction unit. Controlling the induced dynamic electric field between the center electrode and the outer electrodes, concentration / repulsion / manipulation of bio-molecules are enabled at a periphery of electrode. Concentration of the fluorescent DNA at the center electrode is observed by applying +2V. Subsequently, applying -2V, the concentrated DNA is repelled rapidly from the center electrode, which makes dispersion completely in 0.5second. Furthermore, repeated applying +1V/-1V every 5 seconds at each outer electrode, we can circulate the DNA. We also investigate a micro-heater and sensor for DNA manipulation and reaction temperature. The coefficient of heat-resistance and heater temperature characteristic is 0.0043 and 100$^{\circ}C$/sec, respectively.

DNA 템플릿을 활용한 전이금속 칼코겐화합물 트랜지스터 기반 바이오센서 연구

  • O, Ae-Ri;Gang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.213.1-213.1
    • /
    • 2015
  • Field effect transistors (FETs)를 기반으로 한 바이오센서는 빠른 응답속도, 저비용, label-free 등을 이유로 각광받고 있다. 그러나 3D 구조를 기반으로 한 FETs 바이오센서의 낮은 sensitivity의 한계점을 지니며, 이를 극복하기 위해 1D 구조의 나노튜브 등을 활용하였으나 여전히 높은 sensitivity의 확보는 힘들다. 최근에는 이러한 문제점을 극복하기 위해 이차원 반도체 물질 중 하나인 Transition metal dichalcogenide (TMD)를 이용하여, 700 이상의 sensitivity를 지니는 pH센서 및 100 이상의 sensitivity를 지니는 바이오센서가 보고되었다. 하지만 이보다 더 높은 정확성 및 반응성을 높이기 위한 연구는 부족한 실정이다. 우리는 DNA 템플릿을 이용하여, TMD FET 기반 pH 및 바이오센서의 반응성을 극대화시키는 연구를 선보인다. DNA는 7~8정도의 유전상수 (K)를 가지는 물질로 기존 $SiO_2$(K=3.9)보다 높은 유전상수를 가지며 두께를 0.7 nm로 매우 얇게 형성할 수 있는 장점이 있다. 이는 FET 기반 바이오센서의 표면 캐패시턴스를 높여 sensitivity를 극대화할 수 있으며, 기존에 사용된 high-k 기반 바이오센서와 비교하여도 약 10배 이상의 sensitivity 향상을 노릴 수 있다. 또한, TMD 물질로 우리는 $WSe_2$를 선택하였으며, pH 용액의 receptor로써 우리는 3-Aminopropyltriethoxysilane (APTES)를 활용하였고, 템플릿으로 사용된 DNA는 DX tile 및 Ring type의 두 가지를 사용하였다. 추가로, DNA의 phosphate backbone을 중성화시키고 DNA의 base pairing의 charge 안정화를 위해 구리 이온($Cu^{2+}$) 및 란타넘족($Tb^{3+}$)을 추가하였다. 완성된 바이오센서의 pH 센싱을 위해 우리는 pH 6,7,8의 표준 용액을 사용하였으며, 재현성 및 반복성의 확인하였다.

  • PDF

Cluster-based Linear Projection and %ixture of Experts Model for ATR System (자동 목표물 인식 시스템을 위한 클러스터 기반 투영기법과 혼합 전문가 구조)

  • 신호철;최재철;이진성;조주현;김성대
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.3
    • /
    • pp.203-216
    • /
    • 2003
  • In this paper a new feature extraction and target classification method is proposed for the recognition part of FLIR(Forwar Looking Infrared)-image-based ATR system. Proposed feature extraction method is "cluster(=set of classes)-based"version of previous fisherfaces method that is known by its robustness to illumination changes in face recognition. Expecially introduced class clustering and cluster-based projection method maximizes the performance of fisherfaces method. Proposed target image classification method is based on the mixture of experts model which consists of RBF-type experts and MLP-type gating networks. Mixture of experts model is well-suited with ATR system because it should recognizee various targets in complexed feature space by variously mixed conditions. In proposed classification method, one expert takes charge of one cluster and the separated structure with experts reduces the complexity of feature space and achieves more accurate local discrimination between classes. Proposed feature extraction and classification method showed distinguished performances in recognition test with customized. FLIR-vehicle-image database. Expecially robustness to pixelwise sensor noise and un-wanted intensity variations was verified by simulation.

Implementation of apparatus for detecting Ringer's solution exhaustion using electrostatic capacitance variation (정전용량변화를 이용한 링거액소진감지장치의 구현)

  • Kim, Cheong-Worl
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Electrostatic capacitance measurement method in a fine hose was proposed, in which two ring-type electrodes were disposed on the hose in the direction of fluid flow instead of the conventional face-to-face electrodes. With the proposed electrode structure, we realized a Ringer's solution exhaustion detector for an IV(invasive vein) injection set. On a 4 mm-diameter hose of IV set, we disposed two ring-type electrodes of 10 mm width at a distance of 5 mm each other and obtained 0.72 pF and 2.51 pF for air and 10 % dextrose Ringer's solution in the hose, respectively. The capacitance between the two electrodes varied with the hose-wraparound coverage of electrode as well as the width of electrode and the distance between the electrodes. For hose-wraparound electrode coverage of 75 %, the capacitance varied from 0.62 pF to 1.98 pF with the Ringer's solution level between the two electrodes. A charge amplifier converted the capacitance. variation into electric signal and a comparator was used to detect whether Ringer's solution was exhausted or not. The result was delivered to a host using a RF transmitter with 320 MHz carrier frequency.

A Study on the Development of Underwater Robot Control System for Autonomous Grasping (자율 파지를 위한 수중 로봇 제어 시스템 구축에 관한 연구)

  • Lee, Yoongeon;Lee, Yeongjun;Chae, Junbo;Choi, Hyun-Taek;Yeu, Taekyeong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • This paper presents a control and operation system for a remotely operated vehicle (ROV). The ROV used in the study was equipped with a manipulator and is being developed for underwater exploration and autonomous underwater working. Precision position and attitude control ability is essential for underwater operation using a manipulator. For propulsion, the ROV is equipped with eight thrusters, the number of those are more than six degrees-of-freedom. Four of them are in charge of surge, sway, and yaw motion, and the other four are responsible for heave, roll, and pitch motion. Therefore, it is more efficient to integrate the management of the thrusters rather than control them individually. In this paper, a thrust allocation method for thruster management is presented, and the design of a feedback controller using sensor data is described. The software for the ROV operation consists of a robot operating system that can efficiently process data between multiple hardware platforms. Through experimental analysis, the validity of the control system performance was verified.

Effect of Crystal Structures on the Sensing Properties of Nanophase $SnO_2$ Gas Sensor (나노상 $SnO_2$ 가스센서에서 센서검지특성에 미치는 결정구조의 영향)

  • 안재평;김선호;박종구;허무영
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.98-103
    • /
    • 2001
  • Metallic tin powder with diameter less than 50 nm was synthesized by inert gas condensation method and subsequently oxidized to tin oxide ($SnO_2$) along the two heat-treatment routes. The $SnO_2$ powder of single phase with a tetragonal structure was obtained by the heat-treatment route with intermediate annealing step-wise oxidation, whereas the $SnO_2$ powder with mixture of orthorhombic and tetragonal phases was obtained by the heat-treatment route without intermediate annealing (direct oxidation). $SnO_2$ gas sensors fabricated from the nano-phase $SnO_2$ powders were investigated by structural observations as well as measurement of electrical resistance. The $SnO_2$ gas sensors fabricated from the mixed-phase powder exhibited much lower sensitivity against $H_2$ gas than those fabricated from the powder of tetragonal phase. Reduced sensitivity of gas sensors with the new orthorhombic phase was attributed to detrimental effects of phase boundaries between orthorhombic and tetragonal phases and many twin boundaries on the charge mobility.

  • PDF