Browse > Article
http://dx.doi.org/10.3795/KSME-A.2003.27.7.1071

Micromachined DNA Manipulation Device Using Circular Multi-Electrodes  

Moon, Sang-Jun (포항공과대학교 대학원 기계산업공학부)
Yun, Jae-Young (포항공과대학교 대학원 생명과학부)
Lee, Seung-S. (포항공과대학교 대학원 생명과학부)
Nam, Hong-Kil (전남대학교 대학원 유전공학과)
Chi, Yeun-Tae (포항공과대학교 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.27, no.7, 2003 , pp. 1071-1075 More about this Journal
Abstract
In this paper, we present a DNA manipulation device in the reaction chamber, which consists of a center electrode and circular outer electrodes of a reaction unit. The charged bio-molecules, DNA, are manipulated by the charge of the electrode in reaction unit. Controlling the induced dynamic electric field between the center electrode and the outer electrodes, concentration / repulsion / manipulation of bio-molecules are enabled at a periphery of electrode. Concentration of the fluorescent DNA at the center electrode is observed by applying +2V. Subsequently, applying -2V, the concentrated DNA is repelled rapidly from the center electrode, which makes dispersion completely in 0.5second. Furthermore, repeated applying +1V/-1V every 5 seconds at each outer electrode, we can circulate the DNA. We also investigate a micro-heater and sensor for DNA manipulation and reaction temperature. The coefficient of heat-resistance and heater temperature characteristic is 0.0043 and 100$^{\circ}C$/sec, respectively.
Keywords
Circular Multi-Electrodes; DNA Manipulation; Fluorescence; Micro-Heater;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nancy, C.S., Soffia, M., John, M.D., Cecilia, G, and Pier, GR., 2000, 'Free Solution Mobility of DNA Molecules Containing Variable Numbers of Cationic Phosphorarnidate Internucleoside Linkages,' Journal of Chromato-graphy A, Vol. 883, pp. 267-275   DOI   ScienceOn
2 Maniatis, T., 1989, 'Molecular Cloning 2ed.,' Cold Spring Harbor Laboratory Press
3 Pethig, R., 1996, 'Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells,' Crit. Rev. Biotechnol., Vol. 16, pp. 331-348   DOI
4 Northrup, M.A., Gonzalez, C., Hadley, D., Hills, R.F., Landre, P., Lehew, S., Saw, R., Sninsky, J.J., Watson, R., and Watson, R., 1995, 'A MEMS Based Miniature DNA Analysis System,' Solid State Sensors and Actuators and EurosensorslX.. Transducers '95. The 8th International Conference, Vol. 1, pp.764 -767   DOI
5 Mastrangelo, C.H., Burns, M.A., and Burke, D.T., 1998, 'Micro fabricated Devices for Genetic Diagnostics,' Invited to proceedings of the IEEE, pp. 1-15
6 Torsten, W.L., Xu, X., Miller, C., Wang, L., Edman, C.F., and Nerenberg, M., 2000, 'Anchored Multiplex Amplification on a Microelectronic Chip Array,' Nature Biotechnology, Vol. 18, pp. 199-204   DOI   ScienceOn
7 Junquan, X., Lei, W, Zhaohuai, Y., Weiping, Y., Mingxian, H., Jing, C., and Xiao, B.W., 2001, 'Micro Total Analysis Systems 2001,' Kluwer academic publishers, pp. 313-314
8 Patrick, N.G, David, J.W, Charles, B.F., Patrick, J.D., and Stephen, J.C., 1999, 'Single Nucleotide Polymorphic Discrimination by an Electronic Dot Blot Assay on Semiconductor Microchips,' Nature Biotechnology, Vol. 17, pp. 365-370   DOI   ScienceOn