DOI QR코드

DOI QR Code

Micromachined DNA Manipulation Device Using Circular Multi-Electrodes

원형 다중전극을 이용한 DNA 조작소자

  • 문상준 (포항공과대학교 대학원 기계산업공학부) ;
  • 윤재영 (포항공과대학교 대학원 생명과학부) ;
  • 남홍길 (포항공과대학교 대학원 생명과학부) ;
  • 지연태 (전남대학교 대학원 유전공학과) ;
  • 이승섭 (포항공과대학교 기계공학과)
  • Published : 2003.07.01

Abstract

In this paper, we present a DNA manipulation device in the reaction chamber, which consists of a center electrode and circular outer electrodes of a reaction unit. The charged bio-molecules, DNA, are manipulated by the charge of the electrode in reaction unit. Controlling the induced dynamic electric field between the center electrode and the outer electrodes, concentration / repulsion / manipulation of bio-molecules are enabled at a periphery of electrode. Concentration of the fluorescent DNA at the center electrode is observed by applying +2V. Subsequently, applying -2V, the concentrated DNA is repelled rapidly from the center electrode, which makes dispersion completely in 0.5second. Furthermore, repeated applying +1V/-1V every 5 seconds at each outer electrode, we can circulate the DNA. We also investigate a micro-heater and sensor for DNA manipulation and reaction temperature. The coefficient of heat-resistance and heater temperature characteristic is 0.0043 and 100$^{\circ}C$/sec, respectively.

Keywords

References

  1. Maniatis, T., 1989, 'Molecular Cloning 2ed.,' Cold Spring Harbor Laboratory Press
  2. Nancy, C.S., Soffia, M., John, M.D., Cecilia, G, and Pier, GR., 2000, 'Free Solution Mobility of DNA Molecules Containing Variable Numbers of Cationic Phosphorarnidate Internucleoside Linkages,' Journal of Chromato-graphy A, Vol. 883, pp. 267-275 https://doi.org/10.1016/S0021-9673(00)00415-5
  3. Northrup, M.A., Gonzalez, C., Hadley, D., Hills, R.F., Landre, P., Lehew, S., Saw, R., Sninsky, J.J., Watson, R., and Watson, R., 1995, 'A MEMS Based Miniature DNA Analysis System,' Solid State Sensors and Actuators and EurosensorslX.. Transducers '95. The 8th International Conference, Vol. 1, pp.764 -767 https://doi.org/10.1109/SENSOR.1995.717344
  4. Mastrangelo, C.H., Burns, M.A., and Burke, D.T., 1998, 'Micro fabricated Devices for Genetic Diagnostics,' Invited to proceedings of the IEEE, pp. 1-15
  5. Torsten, W.L., Xu, X., Miller, C., Wang, L., Edman, C.F., and Nerenberg, M., 2000, 'Anchored Multiplex Amplification on a Microelectronic Chip Array,' Nature Biotechnology, Vol. 18, pp. 199-204 https://doi.org/10.1038/72658
  6. Junquan, X., Lei, W, Zhaohuai, Y., Weiping, Y., Mingxian, H., Jing, C., and Xiao, B.W., 2001, 'Micro Total Analysis Systems 2001,' Kluwer academic publishers, pp. 313-314
  7. Patrick, N.G, David, J.W, Charles, B.F., Patrick, J.D., and Stephen, J.C., 1999, 'Single Nucleotide Polymorphic Discrimination by an Electronic Dot Blot Assay on Semiconductor Microchips,' Nature Biotechnology, Vol. 17, pp. 365-370 https://doi.org/10.1038/7921
  8. Pethig, R., 1996, 'Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells,' Crit. Rev. Biotechnol., Vol. 16, pp. 331-348 https://doi.org/10.3109/07388559609147425