• Title/Summary/Keyword: charge density

Search Result 1,131, Processing Time 0.027 seconds

Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries

  • Oh, Seung-Min;Sun, Yang-Kook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.172-177
    • /
    • 2012
  • Mo-doped $LiFePO_4$ was synthesized via co-precipitation method using sucrose as the carbon source. Structure, surface morphology, and the electrochemical properties of the synthesized olivine compounds were investigated using Rietveld refinement of X-ray diffraction data (XRD), scanning electron microscopy (SEM), and electrochemical charge-ischarge tests. Spherical morphology with the particle size of ${\sim}8{\mu}m$ authenticated the enhanced tap density and volumetric energy density of the synthesized materials. Charge-discharge behavior of $LiFePO_4$ and Mo-doped $LiFePO_4$ cells demonstrated a specific capacity of 130 and 145 mAh $g^{-1}$, respectively. Mo-doped $LiFePO_4$ cells exhibited an excellent discharge capacity at 96 mAh $g^{-1}$ at 7 C-rate.

A study of static characteristics of New gas mixture in AC-PDP

  • Kwon, Shi-Ok;Kim, Ji-Sun;Joung, Bong-Kyu;Hwang, Ho-Jung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1191-1194
    • /
    • 2005
  • The effects of addition of $D_2$ to conventional gases on the discharge characteristics were investigated in this work with the aim of improving the voltage margin, the wall charge and the jitter. The addition of an extremely small gas-inlet amounts of $D_2$ increased the number of electrons which improves the $Xe^{\ast}$ density and $Xe_2^{\ast}$ density. As a result, the voltage margin, the jitter and the wall charge increased.

  • PDF

Effects of Branch Degree of CPAM for Retention and Drainage

  • Son, Dong-Jin;Kim, Bong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.21-33
    • /
    • 2007
  • CPAM has been applied to the paper industry for the purpose of wet-end improvement for a long time. And molecular weight and charge density have been managed most important quality factors to make CPAM for this application. Recently branched CPAM was developed to improve retention and drainage characteristics and we considered branch degree of CPAM as important factor as molecular weight and charge density. In this experiment, we tried to investigate physical and chemical properties to determine branch degree and flocculation efficiency using Arbocell pulp which was recently developed micro size pulp and finally we applied retention and drainage test under the ONP stock condition.

  • PDF

중성자 산란을 이용한 생체물질의 구조 연구 : 단백질의 생체유사막의 흡착

  • Sin, Gwan-U;Rafailovich, M.H.;Sokolov, J.;Pernodet, N.;Satija, S.K.
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.30-33
    • /
    • 2002
  • We have shown that it is possible to form a fibrilar network of fibronectin on a polyelectrolyte polymer film whose dimensions are similar to those reported on the extra cellular matrix. The fibronectin network was observed to form only when the charge density of the polymer was in excess of the natural charge density of the cell wall. Furthermore, the self-organized fibronectin layer was much thicker than the polymer film, indicating that long ranged interaction may playa key role in the assembly process. It is therefore important to understand the structure of the polymer layer/protein interface. Here we report on a neutron reflectivity study where we explore the structure of the polyelectrolyte layer, in this case sulfonated polystyrene (PSSx,), with varying degree of sulfonation (x<30%), as a function of sulfur content and counter ion concentration. These results are then correlated with systemic study of the adsorption and the multilayer formation of fibronectin as a function of incubation time for various sulfonation levels of $PSSx.^1$

  • PDF

Current Density Equations Representing the Transition between the Injection- and Bulk-limited Currents for Organic Semiconductors

  • Lee, Sang-Gun;Hattori, Reiji
    • Journal of Information Display
    • /
    • v.10 no.4
    • /
    • pp.143-148
    • /
    • 2009
  • The theoretical current density equations for organic semiconductors was derived according to the internal carrier emission equation based on the diffusion model at the Schottky barrier contact and the mobility equation based on the field dependence model, the so-called "Poole-Frenkel mobility model." The electric field becomes constant because of the absence of a space charge effect in the case of a higher injection barrier height and a lower sample thickness, but there is distribution in the electric field because of the space charge effect in the case of a lower injection barrier height and a higher sample thickness. The transition between the injection- and bulk-limited currents was presented according to the Schottky barrier height and the sample thickness change.

Sweet Taste Mechanism of 1-Alkoxy-4-nitroaniline (1-알콕시-4-니트로아닐린들의 糖度에 關한 硏究)

  • U. R. Kim;M. S. Jhon;Y. B. Chae
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.391-394
    • /
    • 1973
  • A semiempirical molecular orbital theory which is known as extended H ckel theory is applied to explain the sweet taste mechanism of nitroaniline, 1-methoxy-4-nitroaniline, and 1-ethoxy-4-nitroaniline which has different sweetness respectively. In this paper, the assumption is made that the nitroaniline is coplanar. The relationship between charge density and sweetness has been calculated according to the geometrical rotation of the orthosubstitute of nitroanilines. It has been shown that the calculated results are consistent with the experimental order of the relative sweetness.

  • PDF

Transferred charge density and Optical Property on Powder Electroluminescent device (후막 EL 소자의 광학 및 이동전하밀도 특성)

  • 오주열;이종찬;박대희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.286-290
    • /
    • 1999
  • Electroluminescence is occurred when phosphor is located in electric field. In this paper, we made powder electroluminescent device (PELD) with structured ITO film/Phosphor/Insulator/Silver paste. The transparent electrode was ITO film and green(2704-01), orange(2702-02) and blue-green(2703-01) were used as phosphor. The insulator was BaTiO$_3$ and $Y_2$O$_3$, back electrode was silver paste. To investigate electrical and optical properties of PELDs, EL spectrum, Brightness, Transferred charge density using Sawyer-Tower\`s circuit was measured.

  • PDF

Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with TiO2 Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.902-906
    • /
    • 2009
  • It is found that that the coating N-acetyl cysteine (NAC) on gold surfaces may be used to design the distribution of either gold particle adsorbed to the $TiO_2$ surface or vice versa by adjusting the electrostatic interactions. In this study, we investigated electrostatic properties of the NAC-coated-gold surface and the $TiO_2$ surface. The surface forces between the surfaces were measured as a function of the salt concentration and pH value using the AFM. By applying the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface forces, the surface potential and charge density of the surfaces were quantitatively acquired for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was explained with the law of mass action, and the pH dependence was with the ionizable groups on the surface.

Optimization of energy level alignment for efficient organic photovoltaics (에너지 준위 접합 최적화를 통한 유기태양전지 효율 향상법)

  • Lee, Hyunbok
    • Vacuum Magazine
    • /
    • v.2 no.2
    • /
    • pp.12-16
    • /
    • 2015
  • Organic photovoltaics (OPVs) have attracted significant interest in an interdisciplinary research field for the decades as a next-generation photovoltaic device due to their unique advantages. One of requirements for OPVs having high power conversion efficiency is the favorable energy level alignment between the electrode/organic and organic/organic interfaces to manage the exciton dissociation and improve the charge transport. In this review, strategies to enhance the OPV performance by controlling the energy level alignment are discussed. The insertion of an exciton blocking layer leads to the efficient dissociation of photogenerated excitons at the donor/acceptor interface enhancing the short-circuit current density. The choice of a donor having a high ionization energy and an acceptor having a low electron affinity increases the open-circuit voltage. The insertion of an appropriate work function modifier which reduces the charge injection barrier removes the S-kink in current density-voltage characteristics of OPVs and improves the fill factor. This review would give a valuable guide to design the efficient OPV structure.

Vapor deposition of silicon nitride film on silicon and its electrical properties (실리콘질화막의 기상성장과 그 전기적 특성)

  • 성영권;민남기;김승배
    • 전기의세계
    • /
    • v.28 no.9
    • /
    • pp.43-50
    • /
    • 1979
  • Silicon nitride films were chemically deposited on silicon substrates by reacting SiCl$_{4}$ and NH$_{3}$ in a nitrogen atmosphere at 700~1100 .deg.C. The deposition rate increased rapidly with deposition temperature upto about 1000 .deg.C, and became less temperature dependent above this temperature. The etch rate of films in buffered HF solution decreased, with an increase of deposition temperature, and a heat treatment at a temperature higher than that of the deposition considerably reduced the etch rate. It indicates that the heat treatment resulted in a densification of the films. Surface charge density of 3~4 * 10$^{11}$ /cm$^{2}$ was determined from the C-V characteristics of MNS diode, and it was also found that surface charge density depended on deposition temperature, but not film thickness. The current-voltage characteristics displayed a logI-V$^{1}$2/ dependence in the temperature range of 300~500.deg.K. Measurement of the slope of this characteristics and its dependence on temperature and bias polarity suggest that conduction in sili con nitride films arises from the Poole-Frenkel mechanism.

  • PDF