• Title/Summary/Keyword: chaotic neural network

Search Result 82, Processing Time 0.026 seconds

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

Robot Trajectory Control using Prefilter Type Chaotic Neural Networks Compensator (Prefilter 형태의 카오틱 신경망을 이용한 로봇 경로 제어)

  • 강원기;최운하김상희
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.263-266
    • /
    • 1998
  • This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.

  • PDF

Direct Adaptive Control of Chaotic Nonlinear Systems Using a Feedforward Neural Network (신경 회로망을 이용한 혼돈 비선형 시스템의 직접 적응 제어)

  • Kim, Se-Min;Choi, Yoon-Ho;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.401-403
    • /
    • 1998
  • This paper describes the neural network control method for the identification and control of chaotic nonlinear dynamical systems effectively. In our control method, the controlled system is modeled by an unknown NARMA model, and a feedforward neural network is used for identifying the chaotic system. The control signals are directly obtained by minimizing the difference between a setpoint and the output of the neural network model. Since learning algorithm guarantees that the output of the neural network model approaches that of the actual system, it is shown that the control signals obtained can also make the real system output close to the setpoint.

  • PDF

A Study on Feedback Control and Development of chaotic Analysis Simulator for Chaotic Nonlinear Dynamic Systems (Chaotic 비선형 동역학 시스템의 Chaotic 현상 분석 시뮬레이터의 개발과 궤환제어에 관한 연구)

  • Kim, Jeong-D.;Jung, Do-Young
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.407-410
    • /
    • 1996
  • In this Paper, we propose the feedback method having neural network to control the chaotic signals to periodic signals. This controller has very simple structure, it is immune to small parameter variations, the precise access to system parameters is not required and it is possible to follow ones of its inherent periodic orbits or the desired orbits without error, The controller consist of linear feedback gain and neural network. The learning of neural network is achieved by error-backpropagation algorithm. To prove and analyze the proposed method, we construct a software tool using c-language.

  • PDF

A study on the Adaptive Controller with Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Ahn, Hee-Wook;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2007
  • This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to nonlinear dynamic system.

A study on the intelligent control of chaotic nonlinear systems using neural networks (신경 회로망을 이용한 혼돈 비선형 시스템의 지능 제어에 관한 연구)

  • 오기훈;주진만;박진배;최윤호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.453-456
    • /
    • 1996
  • In this paper, the direct adaptive control using neural networks is presented for the control of chaotic nonlinear systems. The direct adaptive control method has an advantage that the additional system identification procedure is not necessary. In order to evaluate the performance of our controller design method, two direct adaptive control methods are applied to a Duffing's equation and a Lorenz equation which are continuous-time chaotic systems. Our simulation results show the effectiveness of the controllers.

  • PDF

Direct Adaptive Control of Chaotic Systems Using a Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2187-2189
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of chaotic systems. The conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on a direct adaptive control method is proposed to control chaotic systems whose mathematical models are not available. The gradient-descent method is used for training a wavelet neural network controller. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic system.

  • PDF

Wavelet Neural Network Based Indirect Adaptive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Choi, Jong-Tae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper, we present a indirect adaptive control method using a wavelet neural network (WNN) for the control of chaotic nonlinear systems without precise mathematical models. The proposed indirect adaptive control method includes the off-line identification and on-line control procedure for chaotic nonlinear systems. In the off-line identification procedure, the WNN based identification model identifies the chaotic nonlinear system by using the serial-parallel identification structure and is trained by the gradient-descent method. And, in the on-line control procedure, a WNN controller is designed by using the off-line identification model and is trained by the error back-propagation algorithm. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic nonlinear systems.

A study on the Adaptive Neural Controller with Chaotic Neural Networks (카오틱 신경망을 이용한 적응제어에 관한 연구)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This paper presents an indirect adaptive neuro controller using modified chaotic neural networks(MCNN) for nonlinear dynamic system. A modified chaotic neural networks model is presented for simplifying the traditional chaotic neural networks and enforcing dynamic characteristics. A new Dynamic Backpropagation learning method is also developed. The proposed MCNN paradigm is applied to the system identification of a MIMO system and the indirect adaptive neuro controller. The simulation results show good performances, since the MCNN has robust adaptability to nonlinear dynamic system.

  • PDF

(Design of Neural Network Controller for Contiunous-Time Chaotic Nonlinear Systems) (연속 시간 혼돈 비선형 시스템을 위한 신경 회로망 제어기의 설계)

  • O, Gi-Hun;Choe, Yun-Ho;Park, Jin-Bae;Im, Gye-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.1
    • /
    • pp.51-65
    • /
    • 2002
  • This paper presents a design method of the neural network-based controller using an indirect adaptive control method to deal with an intelligent control for chaotic nonlinear systems. The proposed control method includes the identification and control Process for chaotic nonlinear systems. The identification process for chaotic nonlinear systems is an off-line process which utilizes the serial-parallel structure of multilayer neural networks and simple state space neural networks. The control process is an on-line process which uses the trained neural networks as the system model. An error back-propagation method was used for training of identification and control for chaotic nonlinear systems. The performance of the proposed neural network controller was evaluated by application to the Duffing equation and the Lorenz equation, and the proposed controller was compared with other neural network-based controllers by computer simulations.