• Title/Summary/Keyword: chaotic Lorentz system

Search Result 8, Processing Time 0.02 seconds

Electronic Circuit Analysis of the Lorentz Chaotic System for Engineering Applications (공학적 응용을 위한 로렌츠 카오스 시스템의 전자회로 해석)

  • Han, Sang-Baek;Jo, Mun-Kyu;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.311-316
    • /
    • 2012
  • In this paper, chaotic circuit of the Lorentz system for engineering applications was implemented using resistor, multipliers, capacitors and operational amplifiers. The implemented Lorentz chaotic system was analysed by PSPICE program. PSPICE simulation results show many kind of chaotic phenomena such time waveforms and phase plots. Meanwhile, according to resistor's variation, we got that Lorentz system show equilibrium state, periodic state and chaotic state.

Chaotic dynamics of the multiplier based Lorenz circuit (곱셈기 기반 로렌츠 회로의 카오스 다이내믹스)

  • Ji, Sung-hyun;Song, Han-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.273-278
    • /
    • 2016
  • In this paper, chaotic circuit of the Lorentz system using multipliers, operational amplifiers, capacitor, fixed resistor and variable resistor for control has been designed in a electronic circuit. Through PSPICE program, electrical characteristics such as time waveforms, frequency spectra and phase attractors analyzed. And in the special area ($10{\sim}100k{\Omega}$) of the $500k{\Omega}$ control variable resistor, the circuit showed chaotic dynamics. Also, we implemented the circuit in a electronic hardware system with discrete elements. Measured results of the circuit coincided with simulated data.

Robust Intelligent Digital Redesign (강인 지능형 디지털 재설계 방안 연구)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.220-222
    • /
    • 2006
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated lineal operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a T-S fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

  • PDF

Intelligent Digital Redesign of Uncertain Nonlinear Systems : Global approach (불확실성이 포함된 비선형 시스템에 대한 전역적 접근의 지능형 디지털 재설계)

  • Sung Hwachang;Joo Younghoon;Park Jinbae;kim Dowan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.95-98
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete -time system have proper reason. Sufficiently conditions for the global state -matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMls). Finally, we prove the effectiveness and stabilization of the proposed intelligent digital redesign method by applying the chaotic Lorentz system.

  • PDF

PSPICE analysis of the Lorenz circuit using the MOS resistor (MOS 가변저항을 이용한 로렌츠 회로의 PSPICE 해석)

  • Ji, Sung-Hyun;Kim, Boo-Kang;Nam, Sang-Guk;Nguyen, Van Ha;Park, Yong Su;Song, Han Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1348-1354
    • /
    • 2015
  • In this paper, chaotic circuit of the voltage controlled Lorentz system for engineering applications has been designed and implemented in an electronic circuit. The proposed circuit consists of MOS variable resistor, multipliers, capacitors, fixed resistors and operational amplifiers. The circuit was analysed by PSPICE program. PSPICE simulation results show that chaotic dynamics of the circuit can be controlled by the MOS variable resistor through time series analysis, frequency analysis and phase diagrams. Also, we implemented the proposed circuit in an electronic hardware system with discrete elements. Measured results of the circuit showed controllability of the circuit using the MOS resistor.

Intelligent Digital Redesign for Uncertain Nonlinear Systems Using Power Series (Powrer Series를 이용한 불확실성을 갖는 비선형 시스템의 지능형 디지털 재설계)

  • Sung Hwa Chang;Park Jin Bae;Go Sung Hyun;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.881-886
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent tile complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of tile digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

Robust Intelligent Digital Redesign of Nonlinear System with Parametric Uncertainties (불확실성을 갖는 비선형 시스템의 강인한 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • This paper presents intelligent digital redesign method for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an . example to guarantee the stability and effectiveness of the proposed method.

Development of Robust Fuzzy Controller with Relaxed Stability Condition: Global Intelligent Digital Redesign Approach (완화된 안정도 조건을 갖는 강인한 디지털 퍼지 제어기 설계: 전역적 디지털 재설계 접근법)

  • Sung, Hwa-Chang;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.487-492
    • /
    • 2007
  • This paper presents the development of digital robust fuzzy controller for uncertain nonlinear systems. The proposed approach is based on the intelligent digital redesign(IDR) method with considering the relaxed stability condition of fuzzy control system. The term IDR in the concerned system is to convert an existing analog robust control into an equivalent digital counterpart in the sense of the state-matching. We shows that the IDR problem can be reduced to find the digital fuzzy gains minimizing the norm distance between the closed-loop states of the analog and digital robust control systems. Its constructive conditions are expressed as the linear matrix inequalities(LMIs) and thereby easily tractable by the convex optimization techniques. Based on the nonquadratic Lyapunov function, the robust stabilization conditions are given for the sampled-data fuzzy system, and hence less conservative. A numerical example, chaotic Lorentz system, is demonstrated to visualize the feasibility of the proposed methodology.