• Title/Summary/Keyword: channel sections

Search Result 204, Processing Time 0.028 seconds

A Study on the Flexural Strength Capacity of Wall Stud Assembly (경량형강 스터드 벽체의 휨강도에 관한 연구)

  • Kwon, Young Bong;Chung, Hyun Seok;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.109-116
    • /
    • 2003
  • An investigation on the structural behavior of cold-formed steel lipped C-section stud for interior walls or partitions was carried out. This experimental research was carried out to study the ultimate and service load capacity of stud assemblies that are subjected to lateral loads. Each test specimen consisted of three or four lipped C-section studs and two C-section tracks that restrained both ends. The major factors considered in this experiment were the perforation on the web, the connection of the bridge channel and the special clip. The effect of the plaster board and the ply wood, which were attached to the tension flange on the flexural strength, was also investigated. Thereafter, the test strength capacities were compared with the nominal strength, based on the AISI Specifications (1996).

The Effect of Header and Channel Angle Variation on Two-Phase Flow Distribution at Multiple Junctions (헤더-채널 분기관의 각도변화가 2상 유동 분배에 미치는 영향에 대한 연구)

  • Lee, Jun Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.559-566
    • /
    • 2015
  • The main objective of this work is to experimentally investigate the effect of angle variation on the distribution of two-phase flow at header-channel junctions. The cross-sections of the header and the channels were fixed at $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Air and water were used as the test fluids. Four different header-channel positions were tested : Vertical header with Horizontal channels (case VM-HC), Horizontal header with Horizontal channels (case HM-HC), Horizontal header with Vertical Downward channels (case HM-VDC), and Horizontal header with Vertical Upward channels (case HM-VUC). In all cases, liquid flow distribution tended to decrease gradually in the upstream header region. However, in the downstream region, different trends could be seen. The reason for these different tendencies were identified by flow visualization in each case. The standard deviations for the liquid and gas flow distribution in each case were calculated, and the case of VM-HC had the lowest values compared to other cases because of the symmetrically distributed liquid film and strong flow recirculation near the end plate.

Counter-Current Gas-Liquid Two-Phase Flow in Narrow Rectangular Channels with Offset Strip Fins (휜이 있는 협소 사각 유로에서 대향류 기/액 2상 유동)

  • Sohn, B.H.;Kim, B.J.;Jeong, S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.229-234
    • /
    • 2001
  • An adiabatic counter-current vertical two-phase flow of air and water in narrow rectangular channels with offset strip fm was investigated experimentally. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.06 m/s and 0 to 2.5 m/s ranges, respectively. Two-phase flow regimes were classified by examining the video images of flow patterns in transparent test sections of 760 mm long and 100 mm wide channel with gaps of 3.0 and 5.0 mm. The channel average void fraction was measured by the quick-closing valve method. Unlike the flow regimes in the channels without fin, where bubbly, slug, chum, and annular flow were identified, only bubbly and chum flow regimes were found for the channels with offset strip fin. However the existence of fin in the channels showed negligible effects on the void fraction. Instead counter-current flow limitations were found to happen at lower air superficial velocity once offset strip fin was introduced in narrow rectangular channels.

  • PDF

Evaluation of seismic criteria of built-up special concentrically braced frames

  • Izadi, Amin;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.23-37
    • /
    • 2018
  • In this paper, seismic provisions related to built-up special concentrically braced frames (BSCBFs) are investigated under cyclic loading using non-linear finite element analysis of a single-bay single-story frame. These braces, which contain double angle and double channel brace sections, are considered in two types of single diagonal and X-braced frames. The results of this study show that current seismic provisions such as observing the 0.4 ratio for slenderness ratio of individual elements between stitch connectors are conservative in BSCBFs, and can be increased according to the type of braces. Furthermore, such increments will lead to decreasing or remaining the current middle protected zone requirements of each BSCBFs. Failure results of BSCBFs, which are related to the plastic equivalent strain growth of members and ductility capacity of the models, show that the behaviors of double channel back-to-back diagonal braces are more desirable than those of similar face-to-face ones. Also, for double angle diagonal braces, results show that the failure of back-to-back BSCBFs occurs faster in comparison with face-to-face similar braces. In X-braced frames, cyclic and failure behaviors of built-up face-to-face models are more desirable than similar back-to-back braces in general.

Distortional buckling of cold-formed lipped channel columns subjected to axial compression

  • Zhou, Wangbao;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.331-338
    • /
    • 2017
  • Cold-formed lipped channel columns (CFLCCs) have been widely used in light gauge steel constructions. The distortional buckling is one of the important buckling modes for CFLCCs and the distortional buckling critical load depends significantly on the rotational restrain stiffness generated by the web to the lipped flange. First, a simplified explicit expression for the rotational restraint stiffness of the lipped flange has been derived. Using the expression, the characteristics of the rotational restraint stiffness of the lipped flange have been investigated. The results show that there is a linear coupling relationship between the applied forces and the rotational restraint stiffness of the lipped flange. Based on the explicit expression of the rotational restraint stiffness of the lipped flange, a simplified analytical formula has been derived which can determine the elastic distortional buckling critical stress of the CFLCCs subjected to axial compression. The simplified analytical formula developed in this study has been shown to be accurate through the comparisons with results from the distortional buckling analyses using the ANSYS finite element software. The developed analytical formula is easy to apply, and can be used directly in practical design and incorporated into future design codes and guidelines.

Void Fraction and Pressure Gradient of Countercurrent Two-Phase Flow in Narrow Rectangular Channels (협소 사각유로에서 대향류 2상유동의 기공률과 압력구배)

  • 김병주;정은수;손병후
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • An experimental study on the countercurrent two-phase flow in narrow rectangular channels has been performed. The void fraction and the pressure gradient were investigated using air and water in 760 mm long, 100 mm wide. vertical test sections with 2, 3 and 5 mm channel gaps. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.08 and 0 to 2.5 m/s ranges. respectively. the experimental results were compared with the previous correlations, which were mainly for round tubes, and the qualitative trends were found to be in good agreements. However the quantitative discrepancies were hardly neglected. as the superficial gas velocities increased, the void fraction increased and the pressure gradient decreased, where the effects of the liquid superficial velocities were infinitesimal. as the gap width of the rectangular channel increased the void fraction and the 2-phase frictional pressure gradient approached those values for the round tubes. Equi-periphery diameter, rather than the hydraulic diameter, seemed to be more effective in the analysis of two-phase flow behavior.

  • PDF

Air-water Countercurrent Flow Limitation in Narrow Rectangular Channels (협소 사각유로에서 공기-물 대향류 유동한계)

  • Kim, Byong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.441-446
    • /
    • 2007
  • An experimental study on the countercurrent two-phase flow in narrow rectangular channels has been peformed. Countercurrent flow limitation (CCFL) was investigated using air and water in 760mm long, 100mm wide, vertical test sections with 1 and 3mm channel gaps. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.125 and 0 to 3.5m/s ranges, respectively. As the gap width of rectangular channel increased the CCFL water superficial velocity decreased for the given air superficial velocity. Slight increase of the air superficial velocity resulted in the abrupt decrease of water velocity when $j_g=2{\sim}4m/s$. The critical superficial velocity of air, at which the downward flow of water was no longer allowed, also decreased with the increase of gap width. The experimental results were compared with the previous correlations, which were mainly for round tubes, and the qualitative trends were found to be partially acceptable. However the quantitative discrepancies were hardly neglected. New correlation of CCFL was developed and showed good agreement with the experimental data.

Effects of stenotic severity on the flow structure in a circular channel under a pulsatile flow

  • Kim, Kyung-Won;Cheema, Taqi-Ahmad;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.140-146
    • /
    • 2014
  • Stenosis is the drastic reduction in the cross-sectional area of blood vessel caused by accumulations of cholesterol. It affects the blood flow property and structure from the fluid dynamic point of view. To understand the flow phenomenon more clearly, a particle image velocimetry method is used and the fluid dynamic characteristics in a circular channel containing stenosis structure is investigated experimentally in this study. Different stenotic-structured models made of acrylic material are subjected to a pulsatile flow generated by an in-house designed pulsatile pump. The inner diameter of the tube inlet is 20 mm and the length of reduced area for stenosis ranges between 35mm and 40mm. It is circulated continuously through a circular channel by the pump system. Pressure is measured at four different sections during systolic and diastolic phase changes. The phase-averaged velocity field distribution shows a recirculation regime after the stenotic structure. The effects of the stenotic obstructions are found to be more severe when the aspect ratio is varied.

Compensation Characteristics or Distorted WDM Channel dependence on Variation of Fiber Dispersion (광섬유 분산 변동에 따른 왜곡된 WDM 채널의 보상 특성)

  • Lee, Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.719-726
    • /
    • 2004
  • In this paper, compensation characteristics of distorted WDM channel due to both chromatic dispersion and self phase modulation (SPM) is numerically investigated under the assumptions of non-uniformly distributed fiber dispersion, in order to inspect the application of mid-span spectral inversion (MSSI) to any exact transmission links. The MSSI is compensation method used in this approach. This method has an optical phase conjugator (OPC) placed in mid-way of total transmission length to compensate distorted WDM channels. It is confirmed that MSSI will become applicable to long-haul WDM systems by controlling input light power of transmission channels, when the averaged dispersion of both fiber sections with respect OPC was varied and distributed unequally each other. Applying MSSI to long-haul WDM system, it is possible to remove all in-line compensator, consequently it will be expected to reducing system cost.

A Numerical Analysis of a Discontinuous Flow with TVD Scheme (TVD기법을 이용한 불연속 흐름의 수치해석)

  • Jeon, Jeong-Sook;Lee, Bong-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.597-608
    • /
    • 2003
  • A transcritical flow occurs when the width and slope of a channel are varying abruptly. In this study, the transcritical flow in a two-dimensional open channel is analyzed by using the shallow-water equations. A weighted average flux scheme that has flux limiter with a total variation diminishing condition is introduced for a second-order accuracy in time and space, and non- spurious oscillations at discontinuous points. A HLLC method with three wane speeds is employed to calculate the Riemann problem. To overcome difficulties resulting from variation of channel sections in a two-dimensional analysis of transcritical flow, the numerical model is developed based on a generalized grid system.