• Title/Summary/Keyword: channel scanning

Search Result 134, Processing Time 0.031 seconds

Distance-Based Channel Assignment with Channel Grouping for Multi-Channel Wireless Mesh Networks (멀티채널 무선 메쉬 네트워크에서의 채널 그룹을 이용한 거리 기반 채널 할당)

  • Kim, Sok-Hyong;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1050-1057
    • /
    • 2008
  • Wireless Mesh Networks (WMNs) have recently become a hot issue to support high link capacity in wireless access networks. The IEEE 802. I 1 standard which is mainly used for the network interface technology in WMNs supports up to 3 or 12 multiple channels according to the IEEE 802.11 specification. However, two important problems must be addressed when we design a channel assigmnent algorithm: channel dependency problem and channel scanning delay. The former occurs when the dynamic channel switching of an interface leads to the channel switching of other interfaces to maintain node connectivity. The latter happens per channel switching of the interface, and affects the network performance. Therefore, in this paper, we propose the Distance-Based Channel Assigmnent (DB-CA) scheme for multi-channel WMNs to solve such problems. In DB-CA, nodes just perform channel switching without channel scanning to communicate with neighboring nodes that operate on different channels. Furthermore, DB-CA minimizes the interference of channels being used by nodes near the gateway in WMNs. Our simulation results show that DB-CA achieves improved performance in WMNs.

A Cluster-Based Channel Assignment Algorithm for IEEE 802.11b/g Wireless Mesh Networks (IEEE 802.11b/g 무선 메쉬 네트워크를 위한 클러스터 기반 채널 할당 알고리즘)

  • Cha, Si-Ho;Ryu, Min-Woo;Cho, Kuk-Hyun;Jo, Min-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.87-93
    • /
    • 2009
  • Wireless mesh networks (WMNs) are emerging technologies that provide ubiquitous environments and wireless broadband access. The aggregate capacity of WMNs can be improved by minimizing the effect of channel interference. The IEEE 802.11b/g standard which is mainly used for the network interface technology in WMNs provides 3 multiple channels. We must consider the channel scanning delay and the channel dependency problem to effectively assign channels in like these multi-channel WMNs. This paper proposes a cluster-based channel assignment (CB-CA) algorithm for multi-channel WMNs to solve such problems. The CB-CA does not perform the channel scanning and the channel switching through assigning co-channel to the inter-cluster head (CH) links. In the CB-CA, the communication between the CH and cluster member (CM) nodes uses a channel has no effect on channels being used by the inter-CH links. Therefore, the CB-CA can minimize the interference within multi-channel environments. Our simulation results show that CB-CA can improve the performance of WMNs.

Characterization of optical waveguides with near - field scanning optical microscope (근접장 주사 광학현미경을 이용한 광 도파로 특성 연구)

  • Ji, Won-Soo;Kim, Dae-Chan;Lee, Seung-Gol;O, Beom-Hoan;Lee, El-Hang
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • The propagation characteristic of an optical waveguide was investigated by measuring with a near-field scanning optical microscope (NSOM) the evanescent field formed at the neighbor of its core-cladding interface. For this purpose, the NSOM system was developed specially as a form of Photon scanning tunneling microscope. The evanescent field distributions of several channel waveguides were measured at the wavelength of 1550 ㎚, and the usefulness of the system was verified by comparing experimental results with simulation results. In particular, the interference phenomena of the guided modes during their propagation along a multimode channel waveguide could be observed directly from the measured evanescent field distribution.

Development of Retina Photographing and Multi Channel Image Acquisition System for Thickness Measurement of Retina (망막 두께 측정을 위한 망막 촬영 및 다채널 영상획득장치 개발)

  • 양근호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • In order to measure the retina thickness, the retina photographing system and the multi-channel high speed image data acquisition system is developed. This system requires the optical processing techniques and the high speed image processing techniques. The HeNe laser beam is projected the retina in artificial eye and then we sensed the reflected laser signal using APD array. The laser projection system on retina using optical instruments is implemented. In order to project the plane laser beam on retina, laser photographing system used the polygon mirror for horizontal scanning and the galvano mirror for vertical scanning. We acquired retina images in each channel of APD array, transferred computer using PCI interface the image data after real-time A/D converting.

  • PDF

Particle Image Velocimetry of the Blood Flow in a Micro-channel Using the Confocal Laser Scanning Microscope

  • Kim, Wi-Han;Kim, Chan-Il;Lee, Sang-Won;Lim, Soo-Hee;Park, Cheol-Woo;Lee, Ho;Park, Min-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2010
  • We used video-rate Confocal Laser Scanning Microscopy (CLSM) to observe the motion of blood cells in a micro-channel. Video-rate CLSM allowed us to acquire images at the rate of 30 frames per second. The acquired images were used to perform Particle Image Velocimetry (PIV), thus providing the velocity profile of the blood in a micro-channel. While previous confocal microscopy-assisted PIV required exogenous micro/nano particles as the tracing particles, we employed blood cells as tracing particles for the CLSM in the reflection mode, which uses light back-scattered from the sample. The blood flow at various depths of the micro-channel was observed by adjusting the image plane of the microscope. The velocity profile at different depths of the channel was measured. The confocal micro-PIV technique used in the study was able to measure blood velocity up to a few hundreds ${\mu}m/sec$, equivalent to the blood velocity in the capillaries of a live animal. It is expected that the technique presented can be applied for in vivo blood flow measurement in the capillaries of live animals.

An Efficient Scanning Group and Order Decision Method Using Neighbor Network Information in Wireless LAN (WLAN에서 이웃 네트워크 정보를 이용한 효율적인 스캐닝 그룹 및 순서 결정 방법)

  • Kang, Dong-Wan;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.142-152
    • /
    • 2010
  • When a mobile station(MS) performs a handover, in the IEEE 802.11 WLAN, MS's channel scanning for discovering new available APs is the dominating factor in handover latency, accounting 90% of overall latency. In order to reduce such a scanning latency, we focus on the method for reducing the number of channels for the MS in handover process to scan. With the help of IEEE 802.21 information server(IS), a proper order of groups of channels to be scanned is offered by the current AP depending on the information of neighbor APs in terms of the distance from serving AP, traffic load and network topology. By using this scanning order, the passive scanning of a MS in normal operation enables the MS to filter out the unavailable channels, and thus to classify the candidate channels of neighbor APs into three groups. Then, a handover-imminent MS can perform the active scanning from the most reliable group of channels. Simulation results show that the proposed scanning scheme reduce the scanning latency in comparison with the conventional scheme.

PCISS Scheme for Minimize Prove Delay in Wireless Mesh Networks (무선 메쉬 네트워크 환경에서 프로브 지연을 최소화한 PCISS 기법)

  • Cho, Young-Bok;Lee, Sang-Ho
    • Journal of Convergence Society for SMB
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • Recently Wireless Communication technologies are widely used in Small And Medium Business fields. Wireless mesh networks have been studied as the next generation technology to solve problem of conventional wireless networks. Wireless mesh network uses a 802.11 when make up of network. mesh clients occurs Hard handover moving between ones. This increases the handover latency of the network mobility is a very great issues. Consequently, this paper propose a channel information previously methods to reduce the handover latency selective channels. Proposed scheme accounts for more than 90% of the probe delay to minimize the client had to move the mesh based on the old channel to retrieve information. Through simulation, the proposed scheme had shorter handover delay time than transitional full scan and selective scan. Through results of evaluation, the suggest PCISS scheme more fast 6.5% than transitional scheme.

  • PDF

Fast Group Scanning Scheme in IEEE 802.16e Networks (IEEE 802.16e에서 그룹 기반의 빠른 스캐닝 기법)

  • Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.624-634
    • /
    • 2008
  • The mobile station which is about to do handover in IEEE 802.16e networks scans its neighboring base station channels to decide its next target base station. However, due to the lack of location information of its subscribers, the serving base station cannot provide any reliable candidate channel which is actually attachable by the scanning mobile stations, which makes the mobile station suffer from the long scanning time. Sometimes, long scanning time may cause the degradation of quality of service due to repeatable scan-duration or failure to start the handover procedure in time. To overcome these problems, in this paper, we propose a new protocol so called fast group scanning scheme, in which multiple mobile stations form a group to scan their neighboring base station channels simultaneously. Main contribution of this proposal is to find and decide a reliable target base station within a short scanning time. The fast group scanning scheme can be deployed to the cell network of the serving base station with a dynamic neighboring base station list management.