• Title/Summary/Keyword: channel coding

Search Result 913, Processing Time 0.032 seconds

A Study on the Optical Communication Channel using Forward Error Correcting Technique (순방향 에러 교정 기법을 이용한 광통신 채널에 관한 연구)

  • Kang, Young-Jin;Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.835-839
    • /
    • 2013
  • In this paper, We operate at a relatively low BER or using forward error control coding techniques on ways to increase the capacity of optical communication systems research. Coding gain is defined as the ratio of the probability of the coded signal and coding of error signal. Coding gain is increased, partly because of the period, to reduce the value of the optimal coding of the signal error probability decreases because of the effective bit binary symbol duration is longer than can be ignored. Transmission capacity on the coding gain for various code rates, which show the extent of up to 75Gb/s transmission capacity to get through it was confirmed that these coding techniques.

Performance Evaluation of Network Coding in MANETs for Bidirectional Traffic (MANETs에서 양방향 트래픽에 대한 네트워크 코딩기법의 성능 평가)

  • Kim, Kwan-Woong;Kim, Yong-Kab;Bae, Sung-Hwan;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.491-497
    • /
    • 2012
  • Network coding is that the nodes can combine and mix the packets rather than merely forward them. Therefore, network coding is expected to improve throughput and channel efficiency in the wireless network. Relevant researches have been carried out to adapt network coding to wireless multi-hop network. In this paper, we designed the network coding for bidirectional traffic service in routing layer and IP layer of Ad-hoc network. From the simulation result, the traffic load and the end to end distance effect the performance of the network coding. As end to end distance and the traffic load become larger, the gain of network coding become more increased.

Multiple Description Coding using Whitening Ttansform

  • Park, Kwang-Pyo;Lee, Keun-Young
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1003-1006
    • /
    • 2002
  • In the communications systems with diversity, we are commonly faced on needing of new source coding technique, error resilient coding. The error resilient coding addresses the coding algorithm that has the robustness to unreliability of communications channel. In recent years, many error resilient coding techniques were proposed such as data partitioning, resynchronization, error detection, concealment, reference picture selection and multiple description coding (MDC). Especially, the MDC using correlating transform explicitly adds correlation between two descriptions to enable the estimation of one set from the other. However, in the conventional correlating transform method, there is a critical problem that decoder must know statistics of original image. In this paper, we propose an enhanced method, the MDC using whitening transform that is not necessary additional statistical information to decode image because the DCT coefficients to apply whitening transform to an image have uni-variance statistics. Our experimental results show that the proposed method achieves a good trade-off between the coding efficiency and the reconstruction quality. In the proposed method, the PSNR of images reconstructed from two descriptions is about 0.7dB higher than conventional method at the 1.0 BPP and from only one description is about 1,8dB higher at the same rate.

  • PDF

A Dynamic Queue Management for Network Coding in Mobile Ad-hoc Network

  • Kim, Byun-Gon;Kim, Kwan-Woong;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • Network Coding (NC) is a new paradigm for network communication. In network coding, intermediate nodes create new packets by algebraically combining ingress packets and send it to its neighbor node by broadcast manner. NC has rapidly emerged as a major research area in information theory due to its wide applicability to communication through real networks. Network coding is expected to improve throughput and channel efficiency in the wireless multi-hop network. Many researches have been carried out to employ network coding to wireless ad-hoc network. In this paper, we proposed a dynamic queue management to improve coding opportunistic to enhance efficiency of NC. In our design, intermediate nodes are buffering incoming packets to encode queue. We expect that the proposed algorithm shall improve encoding rate of network coded packet and also reduce end to end latency. From the simulation, the proposed algorithm achieved better performance in terms of coding gain and packet delivery rate than static queue management scheme.

A Study on Satellite Broadband Internet Services In High-Speed Vehicle (고속 이동체에서 위성 광대역 인터넷 서비스를 위한 Cross Layer 부호화 방식)

  • Park, Tae-Doo;Kim, Min-Hyuk;Kim, Nam-Soo;Kim, Chul-Sung;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.485-497
    • /
    • 2009
  • In this paper, we described DVB-S2 system for mobility. cross layer coding technique are needed to maintain the performance in deep fading channel. Cross layer coding is divided into two kinds of level. First level is Physical layer coding and, second layer is link layer or upper layer coding. Fixed on DVB-S2 short frame coding method as a physical layer, we simulated the various coding method as an upper layer coding. Furthermore, we analyzed the performance of each coding method on according to mobile vehicle speed, data rate, interleaving memory size, and IP packet size.

Performance Analysis of Dedicated Short Range Communication System on the Rician Fading Channel (라이시안 페이딩 환경에서 단거리전용통신(DSRC) 시스템의 성능 분석)

  • Kim, Man-Ho;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • In this paper, we investigated performance for 5.8GHz dedicated short range communication system using OFDM which will be applied to Intelligent transportation system services. The maximum speed of a vehicle in DSRC channel is very fast as 180km/h, so a service time is very short to serve a various traffic information if hand-off is not occurred. Therefore higher bit rate is required to proved advanced and intelligent service to the drivers of various vehicle and the data transmission rate of the next generation DSRC system if being promoted over 10Mbps. The signals received in Racian channel have been simulated using the computer simulator. For performance improvement, BCH coding scheme are adopted.

  • PDF

An Optimal Power-Throughput Tradeoff Study for MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, Homayoun;Jafarkhani, Hamid
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.334-345
    • /
    • 2010
  • In this paper, we study optimal tradeoffs of achievable throughput versus consumed power in wireless ad-hoc networks formed by a collection of multiple antenna nodes. Relying on adaptive modulation and/or dynamic channel coding rate allocation techniques for multiple antenna systems, we examine the maximization of throughput under power constraints as well as the minimization of transmission power under throughput constraints. In our examination, we also consider the impacts of enforcing quality of service requirements expressed in the form of channel coding block loss constraints. In order to properly model temporally correlated loss observed in fading wireless channels, we propose the use of finite-state Markov chains. Details of fading statistics of signal-to-interference-noise ratio, an important indicator of transmission quality, are presented. Further, we objectively inspect complexity versus accuracy tradeoff of solving our proposed optimization problems at a global as oppose to a local topology level. Our numerical simulations profile and compare the performance of a variety of scenarios for a number of sample network topologies.

3GPP GERAN Evolution System Employing High Order Modulation and Turbo Coding: TSC for Channel Estimation (터보코딩 및 고차변조를 적용하는 3GPP GERAN 진화 시스템: 채널 추정을 위한 TSC)

  • Lee, Jong-Hwan;Hwang, Eun-Sun;Choi, Byoung-Jo;Hwang, Seung-Hoon;Choi, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.599-606
    • /
    • 2008
  • In this paper, the channel estimation performance of proposed TSC (TSC-S) is investigated in terms of the BER and BLER performances when HSR is considered for GERAN evolution system. The performance is evaluated by the link level simulation and is compared with the other TSC proposal (TSC-E). Numerical results show that the performance employing the TSC-S is almost same to that using the TSC-E. In the case of cochannel interferences, the similar tendency is shown, when joint least square is adopted for channel estimation.

Performance Analysis of Coded Cooperation Protocol with Reactive and Proactive Relay Selection

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.133-142
    • /
    • 2011
  • Coded cooperation that integrates channel coding in cooperative transmission has gained a great deal of interest in wireless relay networks. The performance analysis of coded cooperation protocol with multiple relays is investigated in this paper. We show that the diversity order achieved by the coded cooperation in a multi-relay wireless network is not only dependent on the number of cooperating relays but is also dependent on the code-rate of the system. We derive the code-rate bound, which is required to achieve the full diversity gain of the order of cooperating nodes. The code-rate required to achieve full diversity is a linearly decreasing function of the number of available relays in the network. We show that the instantaneous channel state information (CSI)-based relay selection can effectively alleviate this code-rate bound. Analysis shows that the coded cooperation with instantaneous CSI-based relay selection can achieve the full diversity, for an arbitrary number of relays, with a fixed code-rate. Finally, we develop tight upper bounds for the bit error rate (BER) and frame error rate (FER) of the relay selection based on coded cooperation under a Rayleigh fading environment. The analytical upper bounds are verified with simulation results.