• Title/Summary/Keyword: channel activator

Search Result 64, Processing Time 0.023 seconds

Nitric Oxide Production Ability and its Formation Mechanisms in Macrophage TIB 71 Cell Line by Polysaccharide Extracted from Ganoderma lucidum (영지버섯 다당체의 Nitric Oxide 생성능 및 생성기전 연구)

  • 김성환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.2
    • /
    • pp.333-337
    • /
    • 1998
  • This study was carried out to get infomation on the nitric oxide production ability and its formation mechanisms of polysaccharides extracted from Ganoderma lucidum(PSG) by using murine macrophage cell line. The cultured mycelial cells of Ganoderma lucidum were extracted by alkali, and than neutralized by acid. The extract were passed through the column of DEAE cellulose for more purification. The neutral fraction was concentrated and precipitated with 95% ethanol. The precipitate was lyophilized and PSG was obtained. The immunomodulating effects of PSG on macrophage were performed by using murine macrophage cell line ATCC TIB 71 cells with PSG 0.5mg. PSG alone could not induce the production of nitrite, but it had a significant potential effect on nitrite secretion when the cells were primed and triggered with BCG and Interferon(IFN)-${\gamma}$. Also it was prominent by using calcium channel blocker(verapamil) and adenylate cyclase activator(forskolin).

  • PDF

DIRECT MODULATI6ON OF MAXI-K CHANNEL IN SMOOTH MUSCLE CELL

  • Lee, Moo-Yeol;Chung, Sung-Kwon;Bang, Hyo-Weon;Uhm, Dae-Yong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.36-36
    • /
    • 1996
  • The activities of Maxi-K channels were recorded using inside-out patches. The application of 30 nM of non-specific G protein activator, GTP $\gamma$S, to the intracellular side of the channels increases the channel activities about 3-fold, indicating that there exist some G proteins within the patch membranes to regulate the channel activities. (omitted)

  • PDF

Sophora flavescens Extracts Have Therapeutic Effects on Overactive Bladder Syndrome by Potentiation of Large-Conductance Calcium-Activated Potassium Channel

  • Jo, Heeji;Lee, Hyun Jun;Jang, Sung Joo;Moh, Sang Hyun;Cheong, Jae Hoon;Park, Chul-Seung
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.193-200
    • /
    • 2021
  • Sophora flavescens Ait. (Fabaceae) is a medicinal plant widely founded in Northeast Asia, and its dried root (Kushen) has been used as a traditional Chinese herbal medicine. The therapeutic effects of Kushen in micturition disorder was not investigated comprehensively yet. In the present study, we examined and compared the efficacy of three batches of Kushen extract using different ethanol content through an in vitro cell-based assay. Among them, we chose the batch with the highest efficacy and augmented the volume of extract for industrial purpose. The bulk extract was examined in its efficacy in the in vitro cell-based assay, and the therapeutic effects through an in vivo behavioral assay of OAB rats. The main components of the extracts were analyzed by liquid chromatography. Cytotoxicity of the extracts was investigated by MTT assay. The overall efficacy of the extract was as much as, or more than, kurarinone, a potent BKCa channel activator. Thus, the extract was a potent relaxant of urinary smooth muscle by upregulating the activity of BKCa channel. The Kushen extract could be explored as an alternative medicine against overactive bladder patients indicating severe dysfunction of BKCa channel.

Effects of Pharmacological Modulators of $Ca^{2+}-activated\;K^+$ Channels on Proliferation of Human Dermal Fibroblast

  • Yun, Ji-Hyun;Kim, Tae-Ho;Myung, Soon-Chul;Bang, Hyo-Weon;Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Employing electrophysiological and cell proliferation assay techniques, we studied the effects of $Ca^{2+}$ -activated $K^+$ channel modulators on the proliferation of human dermal fibroblasts, which is important in wound healing. Macroscopic voltage-dependent outward $K^+$ currents were found at about -40 mV stepped from a holding potential of -70 mV. The amplitude of $K^+$ current was increased by NS1619, a specific large-conductance $Ca^{2+}$-activated $K^+$ (BK) channel activator, but decreased by iberiotoxin (IBTX), a specific BK channel inhibitor. To investigate the presence of an intermediate-conductance $Ca^{2+}$-activated $K^+$ (IK) channels, we pretreated the fibroblasts with low dose of TEA to block BK currents, and added 1-EBIO (an IK activator). 1-EBIO recovered the currents inhibited by TEA. When various $Ca^{2+}$-activated $K^+$ channel modulators were added into culture media for 1∼3 days, NS1619 or 1-EBIO inhibited the cell proliferation. On the other hand, IBTX, clotrimazole or apamin, a small conductance $Ca^{2+}$-activated $K^+$ channel (SK) inhibitor, increased it. These results suggest that BK, IK, and SK channels might be involved in the proliferation of human dermal fibroblasts, which is inversely related to the channel activation.

The Regulation of Osteoclastogenesis by L-Type Channel Agonist (L-형 칼슘 이온통로에 의한 파골세포 분화의 조절)

  • Noh, A-Long-Sae-Mi;Yim, Mi-Jung
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.461-465
    • /
    • 2010
  • We investigated the role of L-type $Ca^{2+}$ channel in receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast formation. BayK 8644, a L-type $Ca^{2+}$ channel agonist, was shown to increase the RANKLinduced osteoclastogenesis and actin ring formation in mouse bone marrow-dereived macrophage (BMM) culture system. BayK 8644 stimulated RANKL-induced extracellular signal-regulated kinase (ERK) and p38 MAP kinase (MAPK) activation, which leads to increased nuclear factor of activated T cells (NFAT)c1 expression. Taken together, these data indicate that L-type $Ca^{2+}$ channel regulates osteoclast formation possibly through ERK- and p38-mediated NFATc1 expression.

Systemic Administration of the Potassium Channel Activator in the Polystyrene Latex Bead-Induced Cerebral Vasospasm (Polystyrene Latex Bead에 의한 뇌혈관연축 모델에서 K+ 통로활성제의 전신투여)

  • Jang, Sung Jo;Kang, Sung Don;Yun, Ki Jung
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.6
    • /
    • pp.719-724
    • /
    • 2000
  • Objectives : It has been reported that the presence of a pharmacologically inactive foreign substance, polystyrene latex bead, in subarachnoid space activates a non-specific immunological response and elicits arterial narrowing. Recently the activation of potassium($K^+$) channels may be of benefit in relieving cerebral vasospasm. The present study examined the effects of systemic administration of a ATP-sensitive $K^+$ channel activator, cromakalim, on the polystyrene latex bead-induced cerebral vasospasm. Methods : The spasm models similar to that caused by subarachnoid blood injection were created by injection of bead into rabbit cisterna magna. Intravenous injections of cromakalim were administered twice daily(bid) 30 minutes after induction of vasospasm. Animals were killed by perfusion-fixation 2 days after vasospasm. Basilar arteries were removed and sectioned, and the luminal cross-sectional areas were measured. Results : Injection of bead elicited an arterial constriction, reducing arterial diameter to 33.3% of resting tone. Cromakalim inhibited bead-induced constriction at a dose of 0.3mg/kg(Mann-Whitney test, p<0.01). Conclusion : These results support the concept that the cellular events triggered by inactivation of ATP-sensitive $K^+$ channels are responsible for the pathogenesis of vasospasm. The findings also indicate that cromakalim represents a potential therapeutic agents for the treatment of cerebral vasospasm.

  • PDF

Phorbol Ester-Induced Periodic Contraction in Isolated Rabbit Jugular Vein

  • Ryu, Jae-Cheol;Jung, Dong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.225-232
    • /
    • 1995
  • The present study was conducted to evaluate the effect of phorbol 12,13-dibutyrate (PDBu) on the contraction of rabbit jugular vein in vitro. PDBu concentrations of greater than 10 nM induced a periodic contraction which was composed of rapid contraction, plateau and slow relaxation. The frequency of periodic contraction increased as PDBu concentration increased. The PDBu-induced contraction was inhibited by staurosporine (100 nM), it was not changed by tetrodotoxin $(1\;{\mu}M).$ In $Ca^{2+}$-free medium, PDBu induced a sustaining contraction, but not periodic contraction. Addition of $Ca^{2+}$ to medium evoked periodic contraction which was inhibited by nifedipine, PDBu concentrations of greater than $0.1\;{\mu}M$ increased ^{45}Ca^{2+}$ uptake without changing $^{45}Ca^{2+}$ efflux. Charybdotoxin and apamin, $Ca^{2+}$-activated K^{+}$ channel blockers, did not affect the PDBu-induced periodic contraction, whereas tetraethylammonium (TEA) abolished the periodicity. Pinacidil $(10\;{\mu}M).$, a potassium channel activator, blocked PDBu induced periodic contraction, which was recovered by glybenclamide $(10\;{\mu}M).$. In high potassium solution, PDBu did not produce the periodic contraction. These results suggest that the PDBu-induced periodicity of contraction is modulated by voltage dependent $Ca^{2+}$ channel and ATP-sensitive $K^{+}$ channel.

  • PDF

The role of calmodulin in regulating calcium-permeable PKD2L1 channel activity

  • Park, Eunice Yon June;Baik, Julia Young;Kwak, Misun;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.219-227
    • /
    • 2019
  • Polycystic kidney disease 2-like-1 (PKD2L1), polycystin-L or transient receptor potential polycystin 3 (TRPP3) is a TRP superfamily member. It is a calcium-permeable non-selective cation channel that regulates intracellular calcium concentration and thereby calcium signaling. Although the calmodulin (CaM) inhibitor, calmidazolium, is an activator of the PKD2L1 channel, the activating mechanism remains unclear. The purpose of this study is to clarify whether CaM takes part in the regulation of the PKD2L1 channel, and if so, how. With patch clamp techniques, we observed the current amplitudes of PKD2L1 significantly reduced when co-expressed with CaM and $CaM{\triangle}N$. This result suggests that the N-lobe of CaM carries a more crucial role in regulating PKD2L1 and guides us into our next question on the different functions of two lobes of CaM. We also identified the predicted CaM binding site, and generated deletion and truncation mutants. The mutants showed significant reduction in currents losing PKD2L1 current-voltage curve, suggesting that the C-terminal region from 590 to 600 is crucial for maintaining the functionality of the PKD2L1 channel. With PKD2L1608Stop mutant showing increased current amplitudes, we further examined the functional importance of EF-hand domain. Along with co-expression of CaM, ${\triangle}EF$-hand mutant also showed significant changes in current amplitudes and potentiation time. Our findings suggest that there is a constitutive inhibition of EF-hand and binding of CaM C-lobe on the channel in low calcium concentration. At higher calcium concentration, calcium ions occupy the N-lobe as well as the EF-hand domain, allowing the two to compete to bind to the channel.