• Title/Summary/Keyword: changing climate

Search Result 356, Processing Time 0.029 seconds

Estimating Effects of Climate Change on Ski Industry - The Case of Ski Resorts in South Korea - (스키산업에 기후변화가 미치는 영향 분석 - 한국의 스키장을 사례로 -)

  • Kim, Song-Yi;Park, Chan;Park, Jin-Han;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.432-443
    • /
    • 2015
  • Ski industry is sensitive to climate change. Many studies were carried out to learn the impact on climate change to large scale ski resorts around the world and the results are difficult to be applied to small scale ski resorts in general. So, this study targeted small ski resorts composing the ski industry of Korea and forecasted the impact of climate change. As a result, based on the mitigation efforts to minimize climate changes of the future (RCP 4.5), ski industry could be maintained at the same level of today. However, if climate change continues at the current trend (RCP 8.5), ski resorts will face loss of business days. If 100 days are considered as the minimum days to maintain the ski business, among 17 ski resorts in Korea, 3 ski resorts will be driven out of business by 2030s, 12 more ski resorts by 2060s and remaining 2 ski resort by 2090s will end the business. It means that smaller ski resorts has higher chance of facing difficulties in running business just as large scale ski resorts. Therefore, to sustain the ski business, technical and managerial efforts to adapt to the changing environment is needed.

A Study on the Structural Analysis among Organizational Climate, Multicultural Practical Competence and Job Embededness of Multicultural Family Service Center (다문화가족지원센터의 조직풍토, 다문화실천역량 그리고 직무착근도간의 관계에 대한 구조방정식 모형분석 연구)

  • Shin, Hyo-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.391-400
    • /
    • 2020
  • This research examined organizational climate, multicultural practice competence, and job embeddedness of multicultural family service center and studied on the structural relationship among these variables. The study samples are 175 multicultural practitioners at 7 multicultural family service centers located at Seoul and Gyunggi-Do. The study data was analyzed with descriptive analysis, conformatiory factor analysis and structural analysis by SPSS Statistics 20.0 and Amos 21.0. The study results are as follows. First, organizational climate, multicultural practice competence, and job embededness of multicultural family service centers appeared to be posive by the mean value of 3.5 out of 5. Specifically, work reward and incentives(M=3.33) are relatively low, multicultural practice skills(3.27) are lowest among multicultural practice competence sub-factors and fitness is the highest(Mean=3.79) among job embededness sub-factors. Second, multicultural practice competence have a positive effect on job embededness(Ɓ=0.426, C.R.=5.293, p<.001), and has a mediating effect between organizational climate and job embededness. Third, organizational climate has a positive effect on multicultural practice competence(Ɓ=.206, C.R.=2.499, p<.05) and has a positive effect on job embedednes(Ɓ=0.488, C.R.=6.131, p<.001). Based on the study results, it was suggested to improve job embededness of multicultural practitioners by changing organizational climate and improving multicultural practice competence.

Vulnerability Assessment of Maize and Wheat Production to Temperature Change - In Case of USA and China - (기온변화에 대한 옥수수와 밀 생산량 취약성 평가 - 미국과 중국을 사례로 -)

  • Song, Yongho;Lee, Woo-Kyun;Kwak, Hanbin;Kim, Moonil;Yang, Seung-Ryong
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.371-384
    • /
    • 2013
  • The appearance of abnormal weather caused by climate change have both direct and indirect impact on the society. Especially, agriculture is brought up as a socially important interest having direct impact of climate change in growth and harvest of crops. This study aims to perform vulnerability assessment for the South Korea's two main imported grains, maize and wheat. The production vulnerability assessment of maize and wheat in USA and China to temperature variability, which has a great impact in production, is performed. First, grain cultivation period which affects productivity of main grain production country was selected based on the main cultivation period from several references and previous studies. Then, Intergovernmental Panel on Climate Change AR5 greenhouse gas scenario RCP(representative concentration pathways)8.5 scenarios was used to select the future climate that correspond to the cultivation period of maize and wheat for each producing country. According to the result of production vulnerability analysis using adaptation (temperature changing trend) and sensitivity(temperature variability), the productivity of wheat was higher in USA, while productivity of maize was higher in China. In the future, the result showed that productivity of all two grains will be favorable in USA. The result of production vulnerability assessment through this study can later be used as a preparation data for the coming fluctuation in grain price due to climate change.

Review of Policy Direction and Coupled Model Development between Groundwater Recharge Quantity and Climate Change (기후변화 연동 지하수 함양량 산정 모델 개발 및 정책방향 고찰)

  • Lee, Moung-Jin;Lee, Joung-Ho;Jeon, Seong-Woo;Houng, Hyun-Jung
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.157-184
    • /
    • 2010
  • Global climate change is destroying the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. The Intergovernmental Panel on Climate Change (IPCC 2007) makes "changes in rainfall pattern due to climate system changes and consequent shortage of available water resource" a high priority as the weakest part among the effects of human environment caused by future climate changes. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes, and "direct" interactions, being indirectly affected through recharge. Therefore, in order to quantify the effects of climate change on groundwater resources, it is necessary to not only predict the main variables of climate change but to also accurately predict the underground rainfall recharge quantity. In this paper, the authors selected a relevant climate change scenario, In this context, the authors selected A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by period and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model for groundwater recharge, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems associated with how the groundwater resource circulation system should be reflected in future policies pertaining to groundwater resources, it may be urgent to recalculate the groundwater recharge quantity and consequent quantity for using via prediction of climate change in Korea in the future and then reflection of the results. The space-time calculation of changes to the groundwater recharge quantity in the study area may serve as a foundation to present additional measures for the improved management of domestic groundwater resources.

  • PDF

Geographical Shift of Quality Soybean Production Area in Northern Gyeonggi Province by Year 2100 (경기북부지역 콩 생산에 미치는 지구온난화의 영향)

  • Seo, Hee-Cheol;Kim, Seong-Ki;Lee, Young-Soo;Cho, Young-Cheol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.242-249
    • /
    • 2006
  • Potential impacts of the future climate change on crop production can be inferred by crop simulations at a landscape scale, if the climate data may be provided at appropriate spatial scales. Northern Gyunggi Province is one of the few prospective regions in South Korea for growing quality soybeans. Any geographical shift of production areas under the changing climate may influence the current land planning policy in this region. A soybean growth simulation was performed at 342 land units in northern Gyunggi province to test the potential geographical shift of the current production areas for quality soybeans in the near future (form 2011 to 2100). The land units for soybean cultivation were selected by the land use, the soil characteristics, and the minimum arable land area. Daily maximum and minimum temperature, precipitation, the number of rain days and solar radiation were extracted for each land unit from the future digital climate models (DCM, 2011-2040, 2041-2070, 2071-2100). Daily weather data for 30 years were randomly generated for each land unit for each normal year by using a well-known statistical method. They were used to run CROPGRO-Soybean model to simulate the growth, phonology, and yields of 3 cultivars representing different maturity groups grown at 342 land units. According to the model calculations, the warming trend in this region will accelerate the flowering and physiological maturity of all cultivars, resulting in a 7 to 9 days reduction in overall growing season and a 1 to 15% reduction in grain yield of early to medium maturity cultivars. There was a slight increase in grain yield of the late maturing cultivar under the projected climate by 2070, but a decreasing tend was dominant by the year 2100.

A Study on the Estimation of the GHGs Emissions to the Reuse of De-ionized Water Production Process in Semiconductor Factory (반도체 생산용 초순수 제조공정의 농축수 재이용에 따른 온실가스 발생량 평가에 관한 연구)

  • Han, Jong-Min;Chung, Jin-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.518-525
    • /
    • 2018
  • In the 21st century, human beings are becoming increasingly concerned about greenhouse gas emissions as the environment changes due to climate change become serious. The temperature of Korea has risen by approximately $1.5^{\circ}C$ from 1904 to 2000, and the climate is changing gradually to a subtropical climate. As a result, the frequency of floods and droughts increases, so that the water available to humans is decreasing every year, and the cost of using city water is rising every year. The reuse of wastewater that is normally abandoned is inevitable. This study examined the monthly data for 6 months of operation by installing a reuse system of concentrated wastewater (Re R/O System) that is generated during the process of manufacturing de-ionized water (DI-Water System) used in semiconductor processing. As a result of the survey, the city water supply saved approximately $2,767m^3$ per month. The average annual greenhouse gas emissions was $1,329.07kg-CO_2$ per month due to the electricity consumption of the water reuse system. On the other hand, because of the reduction in city water supply, the average monthly average of $918.64kg-CO_2$ was reduced, and the greenhouse gas emissions were increased to $410.43kg-CO_2$ per month. If it improves some processes in the water reuse system, the amount of greenhouse gas emissions can be reduced by an average of $254.41kg-CO_2$ per month.

Time-dependent Performance-based Design of Caisson Breakwater Considering Climate Change Impacts (기후변화 효과를 고려한 케이슨 방파제의 시간 의존 성능설계)

  • Suh, Kyung-Duck;Kim, Seung-Woo;Mori, Nobuhito;Mase, Hajime
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2011
  • During the past decade, the performance-based design method of caisson breakwaters has been developed, which allows a certain damage while maintaining the function of the structure. However, the existing method does not consider the changing coastal environment due to climate change impacts so that the stability of the structure is not guaranteed over the lifetime of the structure. In this paper, a time-dependent performance-based design method is developed, which is able to estimate the expected sliding distance and the probability of failure of a caisson breakwater considering the influence of sea level rise and wave height increase due to climate change. Especially, time-dependent probability of failure is calculated by considering the sea level rise and wave height increase as a function of time. The developed method was applied to the East Breakwater of the Hitachinaka Port which is located on the east coast of Japan. It was shown that the influence of wave height increase is much greater than that of sea level rise, because the magnitude of sea level rise is negligibly small compared with the water depth at the breakwater site. Moreover, investigation was made for the change of caisson width due to climate change impacts, which is the main concern of harbor engineers. The longer the structure lifetime, the greater was the increase of caisson width. The required increase of caisson width of the Hitachinaka breakwater whose width is 22 m at present was about 0.5 m and 1.5 m respectively for parabolic and linear wave height increase due to climate change.

Development of technology to predict the impact of urban inundation due to climate change on urban transportation networks (기후변화에 따른 도시침수가 도시교통네트워크에 미치는 영향 예측 기술 개발)

  • Jeung, Se Jin;Hur, Dasom;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1091-1104
    • /
    • 2022
  • Climate change is predicted to increase the frequency and intensity of rainfall worldwide, and the pattern is changing due to inundation damage in urban areas due to rapid urbanization and industrialization. Accordingly, the impact assessment of climate change is mentioned as a very important factor in urban planning, and the World Meteorological Organization (WMO) is emphasizing the need for an impact forecast that considers the social and economic impacts that may arise from meteorological phenomena. In particular, in terms of traffic, the degradation of transport systems due to urban flooding is the most detrimental factor to society and is estimated to be around £100k per hour per major road affected. However, in the case of Korea, even if accurate forecasts and special warnings on the occurrence of meteorological disasters are currently provided, the effects are not properly conveyed. Therefore, in this study, high-resolution analysis and hydrological factors of each area are reflected in order to suggest the depth of flooding of urban floods and to cope with the damage that may affect vehicles, and the degree of flooding caused by rainfall and its effect on vehicle operation are investigated. decided it was necessary. Therefore, the calculation formula of rainfall-immersion depth-vehicle speed is presented using various machine learning techniques rather than simple linear regression. In addition, by applying the climate change scenario to the rainfall-inundation depth-vehicle speed calculation formula, it predicts the flooding of urban rivers during heavy rain, and evaluates possible traffic network disturbances due to road inundation considering the impact of future climate change. We want to develop technology for use in traffic flow planning.

Comparison of the Building Envelope Design Elements between Green Building Design Guidelines and Green Building Certification Criteria - Focus on public institution relocation projects - (녹색건축물 디자인가이드라인과 녹색건축 인증 비교를 통한 외피계획요소에 관한 연구 - 공공기관 지방이전 건축물을 중심으로 -)

  • Kim, So-Young;Hwang, Sung-Pil;Oh, Joon-Gul
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.61-68
    • /
    • 2014
  • Due to rapid climate changing and the need for energy conservation, environment friendly initiatives have emerged, and regulations to support establishment of green structures in construction have been legislated and enacted. In this study, the supporting of green build method act for rapid climate change and energy conservation. Using green build method, protecting surrounding ecosystem and developing green building continuously, I suggest alternative for protection of the environment. Identifies Envelope Design Elements among various construction Green Building Design Guidelines. Green buildings that we extract the Green Building envelope design from Design Guideline, select the object building through the green buildings examples of public institution relocation projects. Since then analyzes the planned schematic design and Green Envelope Design Elements and Green Building Certification(G-SEED). So, that future directions for planning correlation of Green Building and Design Guidelines about Green Design Elements Can be presented.

Numerical method study of how buildings affect the flow characteristics of an urban canopy

  • Zhang, Ning;Jiang, Weimei;Hu, Fei
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.159-172
    • /
    • 2004
  • The study of how buildings affect wind flow is an important part of the research being conducted on urban climate and urban air quality. NJU-UCFM, a standard $k-{\varepsilon}$ turbulence closure model, is presented and is used to simulate how the following affect wind flow characteristics: (1) an isolated building, (2) urban canyons, (3) an irregular shaped building cluster, and (4) a real urban neighborhood. The numerical results are compared with previous researchers' results and with wind tunnel experiment results. It is demonstrated that the geometries and the distribution of urban buildings affect airflow greatly, and some examples of this include a changing of the vortices behind buildings and a "channeling effect". Although the mean air flows are well simulated by the standard $k-{\varepsilon}$ models, it is important to pay attention to certain discrepancies when results from the standard $k-{\varepsilon}$ models are used in design or policy decisions: The standard $k-{\varepsilon}$ model may overestimate the turbulence energy near the frontal side of buildings, may underestimate the range of high turbulence energy in urban areas, and may omit some important information (such as the reverse air flows above the building roofs). In ideal inflow conditions, the effects of the heights of buildings may be underestimated, when compared with field observations.