• Title/Summary/Keyword: change land of wetland

Search Result 58, Processing Time 0.029 seconds

A Prediction and Analysis for Functional Change of Ecosystem in South Korea (생태계 용역가치를 이용한 대한민국 생태계의 기능적 변화 예측 및 분석)

  • Kim, Jin-Soo;Park, So-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.114-128
    • /
    • 2013
  • Rapid industrialization and economic growth have led to serious problems including reduced open space, environmental degradation, traffic congestion, and urban sprawl. These problems have been exacerbated by the absence of effective conservation and governance, and have resulted in various social conflicts. In response to these challenges, many scholar and government hope to achieve sustainable development through the establishment and management of environment-friendly planning. For this purpose, we would like to analyze functional change for ecosystem by future land-use/cover changes in South Korea. Toward this goal, we predicted land-use/cover changes from 2010 to 2060 using the future population of Statistics Korea and urban growth probability map created by logistic regression analysis and analyzed ecosystem service value using costanza's coefficient. In the case of scenario 1, ecosystem service value represented 6,783~7,092 million USD. In the case of scenario 2, ecosystem represented 6,775~7,089 million USD, 2.9~7.6 million USD decreased compared by scenario 1. This was the result of area reduction for farmland and wetland which have high environmental value relatively according to urban growth by development point of view. The results of this analysis indicate that environmentally sustainable systems and urban development must be applied to achieve sustainable development and environmental protection. Quantitative analysis of environmental values in accordance with environmental policy can help inform the decisions of policy makers and urban developers. Furthermore, forecasting urban growth based on future demand will provide more precise predictive analysis.

A Prediction on the Wetlands Change of Suncheon Bay by the Sea Level Rise (해수면 상승에 따른 순천만 습지 변화 예측)

  • MOON, Bora;KIM, Dong-Myung;LEE, Suk-Mo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.627-635
    • /
    • 2017
  • Sea level rise caused by climate change has become a global issue. Sea level rise seems to be an important factor of the research for coastal areas as it affects topography and vegetation of coasts and especially for the plan of coastal wetlands restoration which needs to be carried out for a long term, it has to be considered sufficiently. The coastal wetlands in Korea was damaged by the land reclamation project but recent concerns on the restoration have increased as its value is evaluated highly. Suncheon Bay had also reclaimed from wetlands to rice field once however this site is very active for restoration nowadays. This study estimated an effect according to sea level rise by 2100, reappearing the none dike condition of Suncheon Bay so that it can be taken account of a future plan of wetland restoration. The Sea Level Affecting Marshes Model(SLAMM) was selected as predicting model. The input data such as DEM(Digital Elevation Model), slope, wetlands category, sea level rise senario, tidal range and accretion rate was applied for the simulation. The results showed a decrease in tidal flat, an increase in sea area and a change of the rice field to transitional salt marsh consistently by 2100. These results of this study could be used as baseline data in the future plan of ecological restoration in Suncheon Bay.

Greenhouse Gas (CH4, CO2, N2O) Emissions from Estuarine Tidal and Wetland and Their Characteristics (온실기체 (CH4, CO2, N2O)의 하구언갯벌 배출량과 배출특성연구)

  • Kim, Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.225-241
    • /
    • 2007
  • A closed flux chamber system was used for measuring major greenhouse gas (GHG) emission from tideland and/or wetland soils in estuarine area at Saemankum, Kunsan in southwestern Korea during from months of February to June 2006. Hourly averaged GHG soil emissions were measured two to three times a day during the ebb tide hours only. Site soils were analyzed for soil parameters (temperature, pH, total organic contents, N and C contents in soil) in the laboratory. Soil GHG fluxes were calculated based on the GHG concentration rate of change measured inside a closed chamber The analysis of GHG was conducted by using a Gas Chromatography (equipped with ECD/FID) at laboratory. Changes of daily, monthly GHGs' fluxes were examined. The relationships between the GHG emissions and soil chemical contents were also scrutinized with respect to gas production and consumption mechanism in the soil. Soil pH was pH $7.47{\pm}0.49$ in average over the experimental period. Organic matter contents in sample soil was $6.64{\pm}4.98\;g/kg$, and it shows relatively lower contents than those in agricultural soils in Kunsan area. Resulting from the soil chemistry data, soil nitrogen contents seem to affect GHG emission from the tidal land surface. The tidal soil was found to be either source or sink for the major GHG during the experimental periods. The annual average of $CH_{4}\;and\;CO_{2}$ fluxes were $0.13{\pm}0.86\;mg\;m^{-2}h^{-1}\;and\;5.83{\pm}138.73\;mg\;m^{-2}h^{-1}$, respectively, which will be as a source of these gases. However, $N_{2}O$ emission showed in negative flux, and the value was $-0.02{\pm}0.66\;mg\;m^{-2}h^{-1}$, and it implies tidal land surface act as a sink of $N_{2}O$. Over the experimental period, the absolute values of gas fluxes increased with soil temperature in general. Averages of the ambient gas concentration were $86.8{\pm}6.\;ppm$ in $CO_{2},\;1.63{\pm}0.34\;ppm\;in\;CH_{4},\;and\;0.59{\pm}0.15\;ppm\;in\;N_{2}O$, respectively. Generally, under the presence of gas emission from agricultural soils, decrease of gas emission will be observed as increase in ambient gas concentration. We, however, could not found significant correlation between the ambient concentrations and their emissions over the experimental period. There was no GHG compensation points existed in tide flat soil.

Groundwater Use and Its Perspective in Haean Basin, Yanggu County of Gangwon Province (강원도 양구군 해안분지의 지하수 사용과 전망)

  • Lee, Jin-Yong;Han, Jiwon
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.179-189
    • /
    • 2013
  • The Haean basin is a unique geographical feature formed by differential erosion and it borders the military demarcation line. Recently the basin has become an interest of civilians due to security tour, highland vegetables and wetland. After the civil war, the population decreased but it has increased since 2007. The annual mean air temperature in the basin has increased with a rate of $+0.016^{\circ}C/yr$ and the annual precipitation also has increased with a rate of +10.41 mm/yr. The precipitation occurring in June~August (wet season) occupied most of the total precipitation increase. In addition, recently the number of groundwater wells and its use have gradually increased and most of them are for agriculture including cultivation of rice and highland vegetables. If the air temperature further increases in the future according to the climate change scenarios, the highland vegetables cultivation will be difficult. Furthermore, if the rainstorm in the summer will be enforced, the groundwater recharge and water management will be aggravated. Therefore, an evaluation for sustainable groundwater development in the basin and a reform of the current agriculture (change of cultivating crops) depending on much water are essentially required.

Enhancement of flood stress tolerance for upland-adapted cereal crops by the close mixed-planting with rice

  • Iijima, Morio;Awala, Simon K;Hirooka, Yoshihiro;Yamane, Koji
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.44-44
    • /
    • 2017
  • Recently, the occurrences of extreme flooding and drought, often in the same areas, have increased due to climate change. We tested the hypothesis that wetland species could help upland species under flood conditions; that is, the roots of wetland crops may supply $O_2$ to the roots of upland crops by a series of experiments conducted in both humid Japan and semi-arid Namibia (See Iijima et al, 2016 and Awala et al, 2016). Firstly, flooding tolerance of upland-adapted staple crops-pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) mix-cropped with rice (Oryza spp.) was investigated in glasshouse and laboratory experiments in Japan. We found a phenomenon that strengthens the flood tolerance of upland crops when two species-one wetland and one drought tolerant-were grown using the mixed cropping technique that results in close tangling of their root systems, hereinafter referred to "close mixed-planting". This technique improved the photosynthetic and transpiration rates of the upland crops subjected to flood stress ($O_2$-deficient nutrient culture). Oxygen transfer was suggested between the two plants mix-cultured in water, implying its contribution to the phenomenon that improved the physiological status of upland crops under the simulated flood stress. Secondly, we further tested whether this phenomenon would be expressed under field flood conditions. The effects of close mixed-planting of pearl millet and sorghum with rice on their survival, growth and grain yields were evaluated under controlled field flooding in semi-arid Namibia during 2014/2015-2015/2016. Single-stand and mixed plant treatments were subjected to 11-22 day flood stress at the vegetative growth stage. Close Mixed-planting increased seedling survival rates in both pearl millet and sorghum. Grain yields of pearl millet and sorghum were reduced by flooding, in both the single-stand and mixed plant treatments, relative to the non-flooded upland yields, but the reduction was lower in the mixed plant treatments. In contrast, flooding increased rice yields. Both pearl millet-rice and sorghum-rice mixtures demonstrated higher land equivalent ratios, indicating a mixed planting advantage under flood conditions. These results indicate that mix-planting pearl millet or sorghum with rice could alleviate flood stress on dryland cereals. The results also suggest that with this cropping technique, rice could compensate for the dryland cereal yield losses due to field flooding. Mixed cropping of wet and dryland crops is a new concept to overcome flood stress under variable environmental conditions.

  • PDF

Analysis of Paleo Sedimentary Environment of Gochang Coast Using Grain Size Distribution Characteristics (입도분포 특성을 기반으로 한 고창 연안의 과거 퇴적환경 분석)

  • Han, Min;Yang, Dong-Yoon;Park, Chanhyeok
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.43-55
    • /
    • 2018
  • This study aimed to identify different sedimentary environments of Gochang coast according to geomorphic conditions of each bore hole. To achieve the aim, this study utilized the classification of sedimentary environmental conditions of surface sediment, which was based on grain size distribution characteristics.In other words, three sedimentary environmental conditions ofsandy flat + sand beach, coastal sand dune and weathered bedrock soil, which were distinguished based on grain size distribution characteristics of mean-sorting for surface sediments, were applied to the sediments of bore holes. Four sedimentary environments could be identified in Gochang coast. First, the lake sedimentary environment originated from terrestrial sediments seems to have been dominated by weathered bedrock soil that the surface flow has deposited in a coastal wetland or a boundary, which is affected by the sea. Second, the lake sedimentary environment that is little affected by coastal sand dunes is located at the center of a valley, which is connected to the land, and the dune slack of Saban-ri. The surface flow of weather bedrock soil is the main source of deposits. However, there seems to have been a temporary influence of the sea. Third, the lake sedimentary environment that is strongly affected by coastal sand dunes is located at the dune slack of Yeongjeong-ri. This environment shows traces of a change from a coastal sand dune into the dune slack. Finally, the coastalsand dune sedimentary environment, which wasinvestigated by boring the current coastal sand dune, shows a temporary influence of the land but seems to have maintained the overall stability. Consequently, this study demonstrated that the grain size distribution characteristics of the present surface sediments could be effectively applied to identify the sedimentary environments of the paleo bore hole sediments. In addition, the paleo change of sedimentary environment could also be identified in many places of Gochang coast. If the results of this study are combined with the age dating and geochemical analysis in future works, the paleo environmental change in Gochang coast will be restored more precisely.

Impact Assessment of Sea_Level Rise based on Coastal Vulnerability Index (연안 취약성 지수를 활용한 해수면 상승 영향평가 방안 연구)

  • Lee, Haemi;Kang, Tae soon;Cho, Kwangwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.304-314
    • /
    • 2015
  • We have reviewed the current status of coastal vulnerability index(CVI) to be guided into an appropriate CVI development for Korean coast and applied a methodology into the east coast of Korea to quantify coastal vulnerability by future sea_level rise. The CVIs reviewed includes USGS CVI, sea_level rise CVI, compound CVI, and multi scale CVI. The USGS CVI, expressed into the external forcing of sea_level rise, wave and tide, and adaptive capacity of morphology, erosion and slope, is adopted here for CVI quantification. The range of CVI is 1.826~22.361 with a mean of 7.085 for present condition and increases into 2.887~30.619 with a mean of 12.361 for the year of 2100(1 m sea_level rise). The index "VERY HIGH" is currently 8.57% of the coast and occupies 35.56% in 2100. The pattern of CVI change by sea_level rise is different to different local areas, and Gangneung, Yangyang and Goseong show the highest increase. The land use pattern in the "VERY HIGH" index is dominated by both human system of housing complex, road, cropland, etc, and natural system of sand, wetland, forestry, etc., which suggests existing land utilization should be reframed in the era of climate change. Though CVI approach is highly efficient to deal with a large set of climate scenarios entailed in climate impact assessment due to uncertainties, we also propose three_level assessment for the application of CVI methodology in the site specific adaptation such as first screening assessment by CVI, second scoping assessment by impact model, and final risk quantification with the result of impact model.

GIS-based Assessment of the Lateral Connectivity in the Cheongmi-cheon Stream, South Korea (청미천에서 GIS 기반 횡적 연결성 평가)

  • Jin, Seung-Nam;Cho, Hyunsuk;Chu, Yunsoo;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.3
    • /
    • pp.154-162
    • /
    • 2019
  • Lateral connectivity between the channel and the floodplains has been damaged by the levee construction and channelization in most streams of South Korea. The purpose of this study was to develop a technique for easily and remotely assessing lateral connectivity using GIS in the streams and to evaluate the effectiveness of the assessment method by applying it to Cheongmi-cheon Stream, a representative stream in the central Korean Peninsula. The metrics of the lateral connectivity assessment are composed of (1) existence of remaining wetlands and (2) land use property as a habitat quality of the former floodplain outside the levee and (3) existence of levee barrier, (4) connectivity to the stream and (5) connectivity to the upland natural habitats as a connectivity from the channel through floodplain to the upland forest. According to the result of applying the assessment method to Cheongmi-cheon Stream, the lateral connectivity was severely damaged due to the levee construction and land use change in the former floodplain. The GIS-based assessment of the lateral connectivity developed in this study is expected to be used as a useful tool for identifying limitations of current connectivity in various attempts to restore lateral connectivity in riparian ecosystems.

The Change of Riverside Vegetation by Construction of Ecological Stream in Suwoncheon, Gyeonggi Province (경기도 수원천 생태하천 복원사업 이후 식생변화 연구)

  • Choe, Il-Hong;Han, Bong-Ho;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • This study aims to analyze the change in vegetation for 10 years after the construction, targeting Suwoncheon, the first domestic ecological stream construction project. As for the section for the study, the section from Gyeonggi bridge to Youngyeon bridge, the first restoration project section, was targeted. The research districts consisted of 3 districts depending on topographical structure. Investigation check cosisted of cross-sectional topographical structure, vegetation status and the structure of herbaceous plant community. As for the cross-sectional topographical structure of the stream, the width of entire stream was 26.5~28.0m and water channel is 10~20m. The area for hydrophilic space was securing spacious riverside. Upper stream of reservoir beam was shallow and slow in reservoir area above weir. Lower stream of reservoir beam, the width of water channel was narrow and ripples were formed. Among species, 9 plants were planted and 6 species plants including Salix gracilistyla, Phragmites communis and Zoysia japonica were planted at the time of construction. In the water side, there were 2 species, such as Zoysia japonica and Trifolium repens, etc, still remained after seeding at the time of constrcution. The planted plants which were observed through this investigation, were 2 species such as Festuca arundinacea and Dactylis glomerata. Apart from the planted plants, arid climate herbaceous plant such as Setaria viridis and Artemisia princeps var. orientalis formed power and the naturalized species variously emerged in 15 species. For revetment, natural stone stacking method was condicted and Salix gracilistyla, Aceriphyllum rossii, etc were planted. But all the planted plants disappeared and now it was covered with Equisetum arvense and Humulus japonicus. It was because that the base for growth and development of the plants was not constructed at the time of restoration in a way of attaching natural stones onto the concrete base. In the water channel, various wetland species including Typha orientalis, Acorus calamus var. angustatus and Phragmites communis, etc, were planted but only Salix gracilistyla, Phragmites communis and Zizania latifolia remained. As for species of the autochthons, Persicaria thunbergii was dominant. In the lower stream of reservoir beam, Humulus japonicus formed forces. In the hydrophilic space, it was necessary to direct the landscape of in-stream vegetation in cosideration of users. For this, planting Miscanthus sacchariflorus in a community was proposed. In the upper stream of reservoir beam, suplementary screen seeding was necessary so that Zizania latifolia, Typha orientalis and Phragmites communis can fit the depth of water. In the Lower stream of reservoir beam, it was necessary to constantly manage Humulus japonicus so that the wetland autochthons species, such as Phragmites communis and Persicaria thunbergii can establish power more stably.

An Analysis of Environmental Factors of Abandoned Paddy Wetlands as References and Changes in Land Cover Types in the Influence Area (묵논습지 환경요인 및 생태영향권 내 토지피복유형 변화 분석)

  • Park, MiOk;Kwon, SoonHyo;Back, SeungJun;Seo, JooYoung;Koo, BonHak
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.331-344
    • /
    • 2022
  • This study analyzed the characteristics of the soil and hydrological environment of abandoned paddy wetlands examined the changes in land cover type in the ecological affect area, analyzed the environmental factors of abandoned paddy wetlands, and examined the changes in land cover type in the ecological impact area. The ecological environment characteristics of the reference abandoned paddy wetlands were investigated through literature research, environmental spatial information service, and preliminary exploration of the abandoned paddy wetlands, and the basic data for the restoration of abandoned paddy wetlands ware provided by examining the changes in land cover type in the ecological impact area for 40 years. Through this study, it will be possible to manage the rapidly increasing number of abandoned farmland to be converted into wetlands so that it can perform functions equivalent to or greater than that of natural wetlands. In particular, as we checked the clues that abandoned paddy wetlands could spread to surrounding ecological influences through land cover changes, the study sites are highly likely to be reference wetlands, and if the topography, soil, water circulation system, and carbon reduction performance are analyzed carefully, it will be possible to standardize the development process. In addition, through the change in land cover, clues were confirmed that the abandoned paddy wetlands could spread to the surrounding ecological affect areas. The land cover type in the ecological impact area, forests was mainly distributed, but generally decreased rapidly in the last 10-20 years, and forests were changing from coniferous forests to broad-leaved forests, mixed forests, or grassland. It has not yet been fully called to the wetland, and it is found that it has maintained the form of barren or grassland, and as can be seen in the case of natural wetlands after more than 30 years after abandoned, it is expected that the transition will gradually proceed to wetlands that are structurally and functionally similar to natural wetlands.