• Title/Summary/Keyword: change core method

Search Result 354, Processing Time 0.031 seconds

Behavior of Failure on Agricultural Reservoirs Embankment by Riprap Reinforcement Method (Riprap으로 보강된 농업용 저수지 제체의 붕괴거동)

  • Lee, Dal Won;Noh, Jae Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.63-73
    • /
    • 2014
  • In this study, the large scale test was performed to investigate the behavior of failure on the embankment and spillway transitional zone by overtopping. The pore water pressure, earth pressure, settlement and failure behaviors according to several reinforcing method were compared and analyzed. The pore water pressure showed a small change in the spillway transition zone and core, indicating that the riprap and geotextile efficiently reinforced the embankment, but non-reinforcement showed a largely change in pore water pressure. The earth pressure by riprap and geotextile at upstream slope and bottom core increased rapidly with the infiltration of the pore water by overtopping. And the earth pressure at crest showed a smally change due to effect of the inclined core. A settlement by riprap showed a small change and the geotextile decreased a rapidly due to failure of crest. The width of failure by riprap at intermediate stage (50 min) showed a largely due to sliding of crest. But, the width and depth of the seepage erosion after the intermediate overtopping period (100 min) were very small due to the effect of riprap than geotextile and non-reinforcement which delayed failure. It has the effect that protect reservoir embankment from erosion in the central part. The pore water pressure at the spillway transition zone due to overtopping increased a rapidly in the case of non-reinforcement, but the reinforced methods by geotextile and riprap showed a smally change. Therefore, the reinforced method by riprap and geotextile was a very effective method to protect permanently and the emergency an embankment due to overtopping, respectively.

Synthesis of Ni-Ag Core-shell Nanoparticles by Polyol process and Microemulsion Process

  • Nguyen, Ngoc Anh Thu;Park, Joseph G.;Kim, Sang-Hern
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2865-2870
    • /
    • 2013
  • Ni-Ag core-shell nanoparticles were synthesized by polyol process and microemulsion technique successfully. In the polyol process, a chemical reduction method for preparing highly dispersed pure nickel and Ag shell formation have been reported. The approach involved the control of reaction temperature and reaction time in presence of organic solvent (ethylene glycol) as a reducing agent for Ag cation with poly(vinyl-pyrrolidone) (PVP. Mw = 40000) as a capping agent. In microemulsion method, the emulsion was prepared by water/cetyltrimetylammonium bromide (CTAB)/cyclohexane. The size of microemulsion droplet was determined by the molar ratio of water to surfactant (${\omega}_o$). The core-shell formation along with the change in structural phase and stability against oxidation at high temperature heat treatments of nanoparticles were investigated by X-ray diffraction and TEM analysis. Under optimum conditions the polyol process gives the Ni-Ag core-shell structures with 13 nm Ni core covered with 3 nm Ag shell, while the microemulsion method gives Ni core diameter of 8 nm with Ag shell of thickness 6 nm. The synthesized Ni-Ag core-shell nanoparticles were stable against oxidation up to $300^{\circ}C$.

Effective Method for Remodeling of Deteriorated Agricultural Reservoirs (노후화된 농업용 저수지의 효율적인 리모델링 방법)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.43-52
    • /
    • 2017
  • This study analyzed pore water pressure, earth pressure and settlement through laboratory model tests in order to suggest the effective remodeling method in the case of reinforcing the upstream and downstream slope of deteriorated reservoirs that has no cores and filters or is not functional. The method of remodeling the upstream slope using dredge soil is first prevent seepage by installing the core, and the leakage water can be rapidly discharged through a filter installed on the downstream slope. Therefore, it is considered a highly efficient method of remodeling that reduces piping phenomena and increasing the storage capacity of the reservoir. The variation of earth pressure without the core and filter was greater than with it, while the change largely showed in the upstream slope, the downstream slope did not show any significant changes. The remodeling method of the downstream slope with the core appeared differently pore water pressure depending on the presence of the vertical and horizontal filters. In the upstream slope, the pore water pressure rises sharply, the base and middle gradually increased, and the downstream slope appeared small. The pore water pressure of embankment with a vertical and horizontal filter will be smaller than without it. The remodeling of deteriorated reservoir that does not have the function of the filter, the vertical filter must be installed in a position that is higher than the expected seepage line by removing portions of the downstream slopes. Since the horizontal filter is an important structure that provides stable drainage during an earthquake or concentrated leak, it is necessary to examine any change in the seepage characteristics depending on the filter intervals via three-dimensional finite element analysis, and it should be connected to the tow-drain to reduce the possibility of the collapse of the reservoir.

Comparison of Carbon Stock Between Forest Edge and Core by Using Connectivity Analysis (연결성 분석을 활용한 산림의 주연부와 내부의 탄소저장량 비교)

  • Sung, Sun-Yong;Lee, Dong-Kun;Mo, Yong-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • Forest ecosystem is considered as an important stepping stone to minimize the impact of climate change. However, the rapid urbanization has caused fragmentation of forest ecosystem. The fragmentation of forest patch results in edge effect which brings about adverse impacts on forest function and structure. Degradation of forest ecosystem decreases carbon sequestration because edge effect reduces productivity. Therefore, we analyzed the impact of forest edge effect on forest ecosystem carbon stock change in Seongnam-si, Gyeonggi-do. We used connectivity analysis to determine forest edge and core area. The field study sites were selected with considering forest age, density, class and soil type. Secondly, forest carbon stock was calculated with allometric equation. The soil carbon stock was derived from Walkely-Black method. Lastly, Mann-Whitney test was conducted to validate differences between carbon stock in edge and core area. As a result of study, the connectivity analysis was effective to determine forest edge and core. The core and edge of forest patch showed different composition of tree species and soil properties. Carbon stock per tree in the edge area was lower than that in the core area. However, the difference of soil organic carbon content between the edge and core were relatively small. This assessment can be applied for the conservation of forest patch as well as quantitative assessment on the forest carbon stock change caused by fragmentation.

Transient analysis of a subcritical reactor core with a MOX-Fuel using the birth-and-death model

  • Korbu, Tamara;Kuzmin, Andrei;Rudak, Eduard;Kravchenko, Maksim
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1731-1735
    • /
    • 2021
  • The operation of the nuclear reactor requires accurate and fast methods and techniques for analysing its kinetics. These techniques become even more important when the MOX-fuel is used due to the lower value of delayed neutron fraction 𝛽 for 239Pu. Based on a Birth-and-Death process review, the mathematical model of thermal reactor core has been proposed different from existing ones. The analytical method for thermal point-reactor parameters evaluation is described within this work. The proposed method is applied for analysis of the unsteady transient processes taking place in a thermal reactor at its start-up or shutdown power change, as well as during small accidental power variation from the rated value. Theoretical determination of MASURCA reactor core reactivity through the analysis of experimental data on neutron time spectra was made.

Change of Muscle Thickness on Exercise Type of Core Stabilization in Aged Men (남성노인의 코어 안정화 운동 형태가 근 두께에 미치는 영향)

  • Lim, Chaegil
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.1
    • /
    • pp.67-76
    • /
    • 2020
  • Purpose : The purpose of this study was to provide more effective interventions for elderly men with weak core muscles by measuring the thickness of the muscles according to the five core stabilization exercise and comparing the thickness differences in muscles in each posture. Methods : The study selected 29 elderly men aged 65 to 80 years old among outpatient patients at S Medical Center in B city, and measured the muscle thickness by exercise posture once. In order to find out the thickness of the external oblique (EO), internal oblique (IO), and transverse abdominis (TrA) muscles were measured by using rehabilitative ultrasound imaging (RUSI) in five exercise conditions. Results : A significant change in the thickness of the EO muscles in each group was measured by the method of motion, followed by the abdominal crunches (1.67±0.15), the lower body rotations (1.54±0.07). As a result of measuring the thickness of the IO muscles of each group according to the exercise method, the bridge group (1.14±0.22) was the highest, followed by the abdominal drawing group (1.05±0.03). As a result of measuring the thickness of the TrA muscles of each group according to the exercise method, the abdominal crunches (0.98±1.00) were the highest, and the bridge group (0.57±0.05) were higher in order of magnitude. Conclusion : Consequently, the five core stabilization exercises all affect changes in abdominal thickness and are expected to continue to require training studies on muscle posture.

A Study on Eddy-current Probe with Ferrite Cores over a Layered Half-Space (레이어가 있는 하프스페이스에서 페라이트코아가 있는 와류탐침에 대한 연구)

  • Kim, T.W.;Byun, K.R.;Choi, J.H.;Kang, E.S.;Hwang, H.J.
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.613-616
    • /
    • 1998
  • In this paper, a model of a Eddy-current probe coil with a ferrite core in the presence of a half-space with a layer is developed. The half-space with a layer is accounted for by computing the appropriate Green's function by using Bessel transforms. Upon introducing equivalent Amperian currents within a core to explain effect to a impedance change in the coil due to a (ferrite) core, we derive a volume integral equation, The integral equation is transformed via the method of moments into a vector-matrix equation, which is then solved using a linear equation solver. Through the above processing, we computed impedance value in a Eddy-current probe coil due to a conductivity change of layer.

  • PDF

Feasibility Study on the Utilization of Mixed Oxide Fuel in Korean 900MWe PWR Core Through Conceptual Core Nuclear Design and Analysis

  • Joo, Hyung-Kook;Kim, Young-Jin;Jung, Hyung-Guk;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.299-309
    • /
    • 1997
  • The neutronic feasibility of typical Korean three-loop 900MWe class PWR core loaded with mixed oxide fuels for both annual and 18-month cycle strategies has been investigated as a means for spent fuel management. For this study, a method of determining equivalent plutonium content was developed under the equivalence concept which gives the same cycle length as uranium fuel. Optimal plutonium zoning within the MOX assembly was also designed with the aim of minimizing the peak md power. Conceptual core designs hate hen developed for equilibrium cycle with the following variations: annual and 18-month cycle, 1/3 and full MOX loading schemes, and typical and high moderation lattice. The analysis of key core physics parameters shows that in all cases considered satisfactory core designs seem to be feasible, though addition of control rod system and change in Technical Specification for soluble boron concentration are required for full MOX loading in order to meet the current design requirements.

  • PDF

Reduction Design of Core Loss in Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기 전동기의 철손 저감 설계)

  • Lee, Su-Jin;Kim, Sung-Il;Kwon, Soon-O;Jung, Jae-Woo;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.760-761
    • /
    • 2008
  • This paper deals with the core loss as well as torque characteristics according to the change of stator shape in an interior permanent magnet synchronous motor (IPMSM). The finite element method and functional core loss data obtained by the steinmetz equation are used in order to estimate the core loss. To minimize the core loss caused by the shape of tooth tip, slot-area and volume of permanent magnet, those are all the same in each model. In the end, the ratio between tooth width and yoke thickness to minimize the core loss in the IPMSM is presented in this paper.

  • PDF

Research on Mechanical Shim Application with Compensated Prompt γ Current of Vanadium Detectors

  • Xu, Zhi
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.141-147
    • /
    • 2017
  • Mechanical shim is an advanced technology for reactor power and axial offset control with control rod assemblies. To address the adverse accuracy impact on the ex-core power range neutron flux measurements-based axial offset control resulting from the variable positions of control rod assemblies, the lead-lag-compensated in-core self-powered vanadium detector signals are utilized. The prompt ${\gamma}$ current of self-powered detector is ignored normally due to its weakness compared with the delayed ${\beta}$ current, although it promptly reflects the flux change of the core. Based on the features of the prompt ${\gamma}$ current, a method for configuration of the lead-lag dynamic compensator is proposed. The simulations indicate that the method can improve dynamic response significantly with negligible adverse effects on the steady response. The robustness of the design implies that the method is of great value for engineering applications.