• Title/Summary/Keyword: chain-based clustering

Search Result 33, Processing Time 0.062 seconds

Comparison of graph clustering methods for analyzing the mathematical subject classification codes

  • Choi, Kwangju;Lee, June-Yub;Kim, Younjin;Lee, Donghwan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.5
    • /
    • pp.569-578
    • /
    • 2020
  • Various graph clustering methods have been introduced to identify communities in social or biological networks. This paper studies the entropy-based and the Markov chain-based methods in clustering the undirected graph. We examine the performance of two clustering methods with conventional methods based on quality measures of clustering. For the real applications, we collect the mathematical subject classification (MSC) codes of research papers from published mathematical databases and construct the weighted code-to-document matrix for applying graph clustering methods. We pursue to group MSC codes into the same cluster if the corresponding MSC codes appear in many papers simultaneously. We compare the MSC clustering results based on the several assessment measures and conclude that the Markov chain-based method is suitable for clustering the MSC codes.

Unsupervised Image Classification using Region-growing Segmentation based on CN-chain

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.215-225
    • /
    • 2004
  • A multistage hierarchical clustering technique, which is an unsupervised technique, was suggested in this paper for classifying large remotely-sensed imagery. The multistage algorithm consists of two stages. The 'local' segmentor of the first stage performs region-growing segmentation by employing the hierarchical clustering procedure of CN-chain with the restriction that pixels in a cluster must be spatially contiguous. The 'global' segmentor of the second stage, which has not spatial constraints for merging, clusters the segments resulting from the previous stage, using the conventional agglomerative approach. Using simulation data, the proposed method was compared with another hierarchical clustering technique based on 'mutual closest neighbor.' The experimental results show that the new approach proposed in this study considerably increases in computational efficiency for larger images with a low number of bands. The technique was then applied to classify the land-cover types using the remotely-sensed data acquired from the Korean peninsula.

A Bayesian Model-based Clustering with Dissimilarities

  • Oh, Man-Suk;Raftery, Adrian
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.9-14
    • /
    • 2003
  • A Bayesian model-based clustering method is proposed for clustering objects on the basis of dissimilarites. This combines two basic ideas. The first is that tile objects have latent positions in a Euclidean space, and that the observed dissimilarities are measurements of the Euclidean distances with error. The second idea is that the latent positions are generated from a mixture of multivariate normal distributions, each one corresponding to a cluster. We estimate the resulting model in a Bayesian way using Markov chain Monte Carlo. The method carries out multidimensional scaling and model-based clustering simultaneously, and yields good object configurations and good clustering results with reasonable measures of clustering uncertainties. In the examples we studied, the clustering results based on low-dimensional configurations were almost as good as those based on high-dimensional ones. Thus tile method can be used as a tool for dimension reduction when clustering high-dimensional objects, which may be useful especially for visual inspection of clusters. We also propose a Bayesian criterion for choosing the dimension of the object configuration and the number of clusters simultaneously. This is easy to compute and works reasonably well in simulations and real examples.

  • PDF

Clustering Routing Algorithms In Wireless Sensor Networks: An Overview

  • Liu, Xuxun;Shi, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1735-1755
    • /
    • 2012
  • Wireless sensor networks (WSNs) are becoming increasingly attractive for a variety of applications and have become a hot research area. Routing is a key technology in WSNs and can be coarsely divided into two categories: flat routing and hierarchical routing. In a flat topology, all nodes perform the same task and have the same functionality in the network. In contrast, nodes in a hierarchical topology perform different tasks in WSNs and are typically organized into lots of clusters according to specific requirements or metrics. Owing to a variety of advantages, clustering routing protocols are becoming an active branch of routing technology in WSNs. In this paper, we present an overview on clustering routing algorithms for WSNs with focus on differentiating them according to diverse cluster shapes. We outline the main advantages of clustering and discuss the classification of clustering routing protocols in WSNs. In particular, we systematically analyze the typical clustering routing protocols in WSNs and compare the different approaches based on various metrics. Finally, we conclude the paper with some open questions.

Multi-Layer Bitcoin Clustering through Off-Chain Data of Darkweb (다크웹 오프체인 데이터를 이용한 다계층 비트코인 클러스터링 기법)

  • Lee, Jin-hee;Kim, Min-jae;Hur, Junbeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.715-729
    • /
    • 2021
  • Bitcoin is one of the cryptocurrencies, which is decentralized and transparent. However, due to its anonymity, it is currently being used for the purpose of transferring funds for illegal transactions in darknet markets. To solve this problem, clustering heuristic based on the characteristics of a Bitcoin transaction has been proposed. However, we found that the previous heuristis suffer from high false negative rates. In this study, we propose a novel heuristic for bitcoin clustering using off-chain data. Specifically, we collected and analyzed user review data from Silk Road 4 as off-chain data. As a result, 31.68% of the review data matched the actual Bitcoin transaction, and false negatives were reduced by 91.7% in the proposed method.

Scheduling Model for Centralized Unequal Chain Clustering (중앙 집중식 불균등 체인 클러스터링을 위한 스케줄링 모델)

  • Ji, Hyunho;Baniata, Mohammad;Hong, Jiman
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2019
  • As numerous devices are connected through a wireless network, there exist many studies conducted to efficiently connect the devices. While earlier studies often use clustering for efficient device management, there is a load-intensive cluster node which may lead the entire network to be unstable. In order to solve this problem, we propose a scheduling model for centralized unequal chain clustering for efficient management of sensor nodes. For the cluster configuration, this study is based on the cluster head range and the distance to the base station(BS). The main vector projection technique is used to construct clustering with concentricity where the positions of the base stations are not the same. We utilize a multiple radio access interface, multiple-input multiple-output (MIMO), for data transmission. Experiments show that cluster head energy consumption is reduced and network lifetime is improved.

A Multi-Chain Based Hierarchical Topology Control Algorithm for Wireless Sensor Networks

  • Tang, Hong;Wang, Hui-Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3468-3495
    • /
    • 2015
  • In this paper, we present a multi-chain based hierarchical topology control algorithm (MCHTC) for wireless sensor networks. In this algorithm, the topology control process using static clustering is divided into sensing layer that is composed by sensor nodes and multi-hop data forwarding layer that is composed by leader nodes. The communication cost and residual energy of nodes are considered to organize nodes into a chain in each cluster, and leader nodes form a tree topology. Leader nodes are elected based on the residual energy and distance between themselves and the base station. Analysis and simulation results show that MCHTC outperforms LEACH, PEGASIS and IEEPB in terms of network lifetime, energy consumption and network energy balance.

Improving the Yield of Semiconductor Manufacturing Processes using Clustering Analysis and Response Surface Method (군집분석 및 반응표면분석법을 활용한 반도체 공정 수율향상에 관한 연구)

  • Koh, Kwan Ju;Kim, Na Yeon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.2
    • /
    • pp.381-395
    • /
    • 2019
  • Purpose: This study aims to conduct a systematic literature review to suitably identify wide and specific issues and topics on service quality in supply chain. Methods: This study is to investigate service quality in supply chain research using a systematic literature review methodology. In order to extract influential journals and papers, we used the SJR impact factor provided by the SCOPUS database. The collected 169 papers were analyzed using bibliometric analysis, citation analysis as well as keywords network. Results: We conducted a bibliometric analysis to identify top authors contributing to service quality in supply chain and their issues, and further examined important keywords and new emerging keywords. In addition, we extracted five influential papers by PageRank to clarify critical issues and divided into five clusters to identify topics of service quality in supply chain by using network-based approach. In order to examine comprehensive issues and topics of service quality in supply chain, we constructed a keyword network to observe difference in the classification of important keywords across network centrality measures. Conclusion: Our study reviewed literature on service quality in supply chain and explored the future directions and trends of service quality in supply chain.

A Study on the Visiting Areas Classification of Cargo Vehicles Using Dynamic Clustering Method (화물차량의 방문시설 공간설정 방법론 연구)

  • Bum Chul Cho;Eun A Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.141-156
    • /
    • 2023
  • This study aims to improve understanding of freight movement, crucial for logistics facility investment and policy making. It addresses the limitations of traditional freight truck traffic data, aggregated only at city and county levels, by developing a new methodology. This method uses trip chain data for more detailed, facility-level analysis of freight truck movements. It employs DTG (Digital Tachograph) data to identify individual truck visit locations and creates H3 system-based polygons to represent these visits spatially. The study also involves an algorithm to dynamically determine the optimal spatial resolution of these polygons. Tested nationally, the approach resulted in polygons with 81.26% spatial fit and 14.8% error rate, offering insights into freight characteristics and enabling clustering based on traffic chain characteristics of freight trucks and visited facility types.

Pre-cluster HEAD Selection Scheme based on Node Distance in Chain-Based Protocol (체인기반 프로토콜에서 노드의 거리에 따른 예비 헤드노드 선출 방법)

  • Kim, Hyun-Duk;Choi, Won-Ik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1273-1287
    • /
    • 2009
  • PEGASIS, a chain-based protocol, forms chains from sensor nodes so that each node transmits and receives from a neighbor. In this way, only one node (known as a HEAD) is selected from that chain to transmit to the sink. Although PEGASIS is able to balance the workload among all of the nodes by selecting the HEAD node in turn, a considerable amount of energy may be wasted when nodes which are far away from sink node act as the HEAD. In this study, DERP (Distance-based Energy-efficient Routing Protocol) is proposed to address this problem. DERP is a chain-based protocol that improves the greedy-algorithm in PEGASIS by taking into account the distance from the HEAD to the sink node. The main idea of DERP is to adopt a pre-HEAD (P-HD) to distribute the energy load evenly among sensor nodes. In addition, to scale DERP to a large network, it can be extended to a multi-hop clustering protocol by selecting a "relay node" according to the distance between the P-HD and SINK. Analysis and simulation studies of DERP show that it consumes up to 80% less energy, and has less of a transmission delay compared to PEGASIS.

  • PDF