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Abstract
Various graph clustering methods have been introduced to identify communities in social or biological net-

works. This paper studies the entropy-based and the Markov chain-based methods in clustering the undirected
graph. We examine the performance of two clustering methods with conventional methods based on quality mea-
sures of clustering. For the real applications, we collect the mathematical subject classification (MSC) codes of
research papers from published mathematical databases and construct the weighted code-to-document matrix for
applying graph clustering methods. We pursue to group MSC codes into the same cluster if the corresponding
MSC codes appear in many papers simultaneously. We compare the MSC clustering results based on the several
assessment measures and conclude that the Markov chain-based method is suitable for clustering the MSC codes.
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1. Introduction

The mathematical subject classification (MSC) is the five-digit alphanumerical code for the organiza-
tion of research papers, which are based on two mathematical databases, mathematical reviews (MR)
and Zentralblatt MATH (zbMath) (Lange et al., 2012). The primary purpose of the use of MSC is to
help users find the literature of interest by subject area (https://msc2020.org/). Various mathematical
and other scientific journals often request authors to enter the MSC codes in their articles, and the
author-supplied MSC codes are used to classify submissions. Browsing the database of MR and zb-
Math using MSC search is an effective method of the following research in specific areas. Each paper
can be involved in multiple study areas with corresponding MSC codes; therefore, it is represented by
a combination of various mathematical fields. MSC codes only provide a hierarchical classification
scheme; however, it is desirable to apply statistical clustering methods to identify and cluster the spe-
cific topics in the academic field by investigating multiple MSC codes presented in the same papers.
It is possible to gather detailed information about an intimate relationship between all areas of pure
and applied mathematics through a database of mathematical papers.

Due to the emergence of a complex structure of data, various kinds of clustering methods have
been studied for partitioning a finite set of data into different clusters according to similarities. Graph
clustering algorithms can easily be applied to identify communities when the data is a form of the
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Table 1: Top 10 MSC codes most frequently referred

MSC Major category Minor category Num. of docs
01A70 History and biography Biographies, obituaries, . . . 23,637
81T30 Quantum theory String and superstring theory . . . 19,333
65N30 Numerical analysis Finite elements, Rayleigh-Ritz . . . 17,567
68Q25 Computer science Analysis of algorithms and . . . 17,187
47H10 Operator theory (1959–) Fixed-point theorems . . . 15,437
62M10 Statistics Time series, auto-correlation 14,469
35Q53 Partial differential equation KdV-like equations . . . 13,526
62G05 Statistics Estimation 13,389
05C85 Combinatorics Graph algorithms . . . 13,135
35B40 Partial differential equation Asymptotic behavior of solutions 13,014

MSC = mathematical subject classification.

network such as social networks or modules in biological systems (Kenley and Cho, 2011). In this
paper, we compare graph clustering methods for grouping MSC codes into similar clusters.

This paper is organized as follows. In Section 2, we describe how to obtain the MSC data and
construct graph data for applying the graph clustering methods. In Section 3, we review two well-
known graph clustering algorithms, entropy-based clustering, and Markov chain clustering (MCL). A
comparative study of graph clustering methods is given in Section 4. Concluding remarks are provided
in Section 5.

2. Data and preprocessing

In the MR database at the MathSciNet website (http://www.ams.org/mathscinet), each of 3,193,603
entries (papers, books, and reports) provides bibliographic information for a document published from
in 1899 to in 2015 along with possibly multiple choices of MSC codes. We download P = 2,975,635
entries published in 1940–2015 with a least one MSC codes and 1,101,422 documents have a single
MSC code, but 62.96% items have multiple codes (995,257 documents with two codes, 531,327
documents with three codes, 228,847 with four codes, and 116,782 documents with five to ten codes).

An MSC code consists of a two digits primary classification code (79 codes are used so far), a
letter, and two digits code for minor classification; for example, 00A15 for bibliographies in the 00-
General subject. There are 9,395 known MSC codes (as of Jan 1, 2016) but only N = 8,822 codes
are used at least once in the P items, and we list the top ten MSC codes most frequently referred in
Table 1.

We now define the binary incidence matrix X = (xip) using discrete MSC code information as:

xip =

{
1, if ith MSC code is used in an pth document,
0, otherwise,

where i = 1, . . . ,N and p = 1, . . . , P. Now, we construct a weighted graph G = G(V, E) where
the vertices V = (v1, . . . , vN) and edges E are the MSC codes and their similarity, respectively. To
transform X into a form of graph, we compute an N × N adjacency matrix M = XXT . Then, the
(i, j)th element of M, Mi j represents the strength of edge between vertex vi and v j, i.e., the number
of documents containing the ith and jth MSC code simultaneously. Intuitively, if Mi j is large, many
documents which have both MSC code i and j, so these MSC codes will be in the same cluster. Table 2
shows 11 edges with edge strength bigger than 2,500; in addition, Figure 1 provides part of the graph
that focuses on the field of Statistics (62XDD).

The entries in the adjacency matrix M associated with the code to document matrix X represent the
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Table 2: Top 11 pairs of MSC codes with Mi j larger than 2,500

MSCi Major (Minor) category MSC j Major (Minor) category Mi j
03B35 Math · · · logic (Mechanization of proofs · · · ) 68T15 Computer science (Theorem proving · · · ) 2,628
05C85 Combinatorics (Graph algorithms) 68R10 Computer science (Graph theory) 4,790
05C85 Combinatorics (Graph algorithms) 68Q25 Computer science (Analysis of algorithm) 2,801
17B37 Nonassociative ring (Quantum groups · · · ) 81R50 Quantum theory (Quantum groups · · · ) 2,972
35Q30 Partial differ · · · (Navier-Stokes eq · · · ) 76D05 Fluid mechanics (Navier-Stokes eq · · · ) 3,721
47H09 Operator theory (Contraction-type · · · ) 47H10 Operator theory (Fixed-point theorem) 3,097
47H10 Operator theory (Fixed-point theorem) 54H25 General topology (Fixed-point and · · · ) 4,688
60K25 Probability theory (Queueing theory · · · ) 90B22 Operations research (Queues and service) 5,528
68Q25 Computer science (Analysis of algorithm) 68R10 Computer science (Graph theory) 2,949
81T30 Quantum theory (String and super · · · ) 81T60 Quantum theory (Supersymmetric field) 2,723
81T30 Quantum theory(String and super · · · ) 83E30 Relativity and gra(String and super · · · ) 6,412

MSC = mathematical subject classification.

Figure 1: A part of graph with the adjacency matrix M.

number of links between two MSC codes so the contribution to the entries by pth document depends
on the number of codes mp in the document. If a document contains two codes MSCi and MSC j then
Mi j and M ji will be added by one each, so total contribution on the entries of M will be 2. A document
with mp > 1 codes make total P(mp, 2) (mp permutation 2) contributions to M. In order to normalize
the contribution to M from each document to be one, we introduce a weighted code-to-document
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Figure 2: Relative strength of the edges of Mw
i j.

matrix Xw as:

xw
ip =


1

P(mp, 2)
, if ith code is one of mp MSC codes in pth document,

0, otherwise,

for i = 1, . . . ,N and p = 1, . . . , P with P(1, 2) := 1, P(m, 2) := m(m − 1), m > 1. Then the sum of
all entries of the weighted adjacency Mw := Xw(Xw)T associated with Xw will be the number of the
documents,

∑N
i=1

∑N
j=1 Mw

i j = P.
Table 2 shows the strength of the weighted adjacency matrix. Here for just simple visualization, we

only use the graph with 79 nodes associated with the principal classification codes (instead of actual
N = 8,822 codes for real computations). The width of each edge represents the relative strength of
the edges (excluding self-interactions) of Mw

i j. We can easily see that 81-Quantum/83-Relativity, 06-
Order.Latice/03-Math.Logic, 54-Gen.Topology/47-Oper.Theory, and 63-Fluid/35-Part.Diff.Eq pairs
are closely related.

3. Methods

In this section, we review two graph clustering methods. Consider the clustering problem for parti-
tioning N vectors of P-dimensional binary data (X) or vertices V of G into K(≤ N) disjoint clusters
C1,C2, . . . ,CK . Let us define a clustering set C as a collection of K disjoint clusters C1,C2, . . . ,CK .
Note that a clustering set C of K disjoint clusters also can be regarded as an K-partition ofN={1, 2, . . . ,
N}. Then, i ∈ Ck implies that an ith MSC code belongs to kth cluster Ck.
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3.1. Entropy-based clustering algorithm

Entropy type measures for similarity among the finite set of data have been frequently used. Since it
is hard to define a distance when the given set of data is discrete, we use the entropy-type measures
for similarity among distinct objects. Here, we review an entropy-based clustering method Li et al.
(2004), Chen and Liu (2005) minimizing the expected entropy of the partition. An entropy-based
clustering algorithm can be formally derived in the framework of probabilistic clustering models.

For given cluster Ck, an entropy of the partition is defined as

H(Ck) = −
∑
i∈Ck

P∑
p=1

1∑
s=0

Pr(xip = s) log Pr(xip = s),

for k = 1, . . . ,K. For each cluster Ck, we let nk be the number of MSC codes in each cluster Ck and
Np,k,1 =

∑
i∈Ck

xip, Np,k,0 = nk − Np,k,1. Then, with the estimated Pr(xip = s), P̂r(xip = s) = Np,k,s/nk,
the estimate of H(Ck) is

Ĥ(Ck) = −
P∑

p=1

1∑
s=0

Np,k,s

nk
log

Np,k,s

nk
.

An entropy-based clustering method finds C1, . . . ,CK to minimize the following entropy measure
of the partition

Ĥ(C) =
1
N

K∑
k=1

nkĤ(Ck)

which is the weighted sum of an estimated entropy Ĥ(Ck).
Following Li et al. (2004), Ĥ(C) can be approximated as

Ĥ(C) ≈ 1
N

K∑
k=1

1
nk

∑
i, j∈Ck

P∑
p=1

∣∣∣xip − x jp

∣∣∣
=

1
N

K∑
k=1

1
nk

∑
i, j∈Ck

(
xi+ + x j+ − Mi j

)
, (3.1)

where xi+ =
∑P

p=1 xip and x j+ =
∑P

p=1 x jp. Note that to minimize the estimated entropy, the pairs of
MSC codes with large Mi j tend to be in the same cluster.

For an actual algorithm implementation, we use the Monte-Carlo method suggested by Li et al.
(2004). First, we make all MSC codes placed randomly in the K clusters with almost the same size.
Then we choose one MSC code v randomly. Let Ci denote a current cluster containing a randomly
chosen code v. According to the value of an estimated expected entropy, we decide if the randomly
chosen code v moves from a current cluster Ci to another cluster C j (, Ci) or not. We move the code v
from a current cluster Ci to another cluster C j if the cluster C j (after getting a current code v) has less
estimated expected entropy than a current cluster Ci. Otherwise, the code v stays in the current cluster
Ci. After continuing these steps, we assign MSC codes into K disjoint clusters minimizing the esti-
mated expected entropy. The repetitive relocation is required in the actual algorithm implementation.
Note that the convergence property of the Monte-Carlo optimization is shown in Li et al. (2004).
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3.2. Markov chain clustering algorithm

Recall that the (i, j)th element of an N × N adjacency matrix M, Mi j represents the number of papers
containing the ith and jth MSC code. Define a transition matrix T for the graph G as a matrix having
an (i, j)th element Ti j which is obtained as

Ti j =
Mi j∑
j,i Mi j

,

where 1 ≤ i ≤ N and 1 ≤ j ≤ N.
A random walk of a directed graph consists of a series of vertices generated at a starting vertex,

reaching the next vertex by selecting one of the outgoing edges, and repeating that process. A finite
Markov chain defined on the set of states, which is denoted by V = {v1, v2, . . . , vN}, is specified by
the transition matrix T of the weighted graph G on the vertex set V . Therefore, there is no significant
difference between a random walk on graphs and a finite Markov chain. In the weighted directed
graph, all Markov chains can be thought in random walks on directed edges. A MCL algorithm
generates random walks on weighted graphs for dividing a finite set of data into different clusters
according to their similarity. When a random walk reaches the vertex w from a starting vertex v with
high probability, vertices v and w need to be collected together into the same cluster in the MCL
algorithm.

Let that an (i, j)th element of the matrix Mr, which is made by the rth power of M, is a number
of length r paths from vi to v j. Therefore a number of length r paths between two vertices, vi and v j,
is obtained by raising the adjacency matrix of G to the exponent r. To subdivide MSC codes into K
disjoint clusters according to their similarity, the MCL algorithm is explained in the following four
steps (Van Dongen, 2008).

• Step 1. We define a matrix M∗ having an (i, j)th element which is obtained as

M∗i j =

Mi j, when i , j,
1, when i = j.

Then we execute a normalization of the matrix M∗. Let us call the normalized matrix M.

• Step 2 (Expansion). In this step, we execute the power of the matrix M, which means M × M.
Then we again call the powered matrix M. Note that the effectiveness of the power of a matrix
diminishes as the flow proceeds, where a flow on the graph G is defined as a transition probability
from a vertex to another vertex. The higher powers of the matrix obtained after repeating this step
also reinforce more connections between MSC codes.

• Step 3 (Inflation). Let r be a given inflation parameter. Depending on the given inflation parameter
r, an inflation operator Γr : RN×N → RN×N is defined as

Γr Mi j =
(Mi j)r∑N

q=1(Mq j)r
,

where Γr Mi j is an (i, j)th element of the matrix Γr M.

Note that the inequality of each column becomes bigger after taking an inflation operator Γr. If
an (i, j)th element of the matrix M has a big (small) value, then an (i, j)th element of the matrix
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Γr M becomes bigger (smaller), respectively. After executing a normalization of the matrix Γr M,
we again call the normalized matrix M.

• Step 4 (Iteration). We repeat the second and third steps until the matrix M converges.

The expansion step strengthens more connections among MSC codes and subdivides MSC codes
into some vast clusters. However, the inflation step both strengthens already strong currents and
weakens already weak currents. To avoid dominantly massive clusters, we need the inflation step that
distributes the MSC codes across the different clusters. In the MCL algorithm, the given inflation
parameter r controls the extent of strengthening and weakening and influences the granularity of
disjoint clusters. For the given set of data, we subdivide MSC codes into 136 disjoint clusters by
setting a value 1.5 as an inflation parameter.

4. Numerical study

In this section, we apply the entropy-based clustering (Entropy) in Section 3.1 and MCL in Section
3.2 to the MSC code dataset. Furthermore, we compare these with conventional methods and evaluate
the performance. As the traditional methods, we use the hierarchical clustering algorithm. First, we
start by assigning each MSC code into a single cluster. Then we have N clusters containing just one
MSC code. Second, we find the closest pair of clusters, which is most similar among them. Then
we merge them into a single cluster. Now we have N − 1 clusters. Third, we compute all distances
between any two clusters among N − 1 clusters, where a distance between two clusters, Ci and C j,
is defined as an average of all distances between any two codes v ∈ Ci and w ∈ C j. Then we repeat
the second step to find the closest pair of clusters that are most similar and merge them into a single
cluster. We repeat the second and third steps until we get K disjoint clusters.

For dissimilarity measure δ(xi, x j) between two MSC codes i and j, we use the following Jaccard
coefficient and Simple matching coefficient:

(1) Jaccard coefficient:
P∑

p=1

|xip − x jp|
||{p : xip = 1 or x jp = 1}|| .

(2) Simple matching coefficient:
P∑

p=1

|xip − x jp|
P

.

In this paper, the hierarchical clustering algorithms based on Jaccard coefficient and Simple match-
ing coefficient are called hclust1 and hclust2. The hclust1 method considers the effectiveness of the
number of the coordinates of two codes, xi = (xi1, xi2, . . . , xiP) and x j = (x j1, x j2, . . . , x jP), having the
value 1 in the same position.

We consider within-cluster criterion for the clustering set C that evaluates the clustering results of
these four algorithms (Entropy, hclust1, hclust2, and MCL)

D(C) =
1
N

K∑
k=1

1
nk

∑
i, j∈Ck

δ(xi, x j),

where a dissimilarity δ(xi, x j) is a Jaccard coefficient or a Simple matching coefficient between two
MSC codes, xi and x j. The within-cluster criteria for the clustering set C of Entropy, hclust1, hclust2,
and MCL are given in Table 3. All clustering methods are similar in terms of the Jaccard coefficient.
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Table 3: Dissimilarity measures of clustering methods

Within-cluster criterion MCL Entropy hclust 1 hclust2
Jaccard coefficient 0.982 0.983 0.984 0.984
Simple matching coefficient 4.59 ×1E-04 4.39 ×1E-04 4.68 ×1E-04 3.81 ×1E-04

MCL = Markov chain clustering; Entropy= entropy-based clustering; hclust1 = hierarchical clustering algorithms based
on Jaccard coefficient; hclust2 = hierarchical clustering algorithms based on Simple matching coefficient.

Table 4: Size of biggest four clusters

Size Entropy hclust1 hclust2 MCL
Biggest 926 6278 8666 601
Second 634 1605 4 469
Third 526 792 3 423
Fourth 398 8 2 395

Standard deviation 115.3391 556.0134 740.2677 96.46783

Entropy= entropy-based clustering; hclust1 = hierarchical clustering algorithms based on Jaccard coefficient; hclust2 =
hierarchical clustering algorithms based on Simple matching coefficient; MCL =Markov chain clustering.

Table 5: Estimated entropy and W-Ratio value for each clustering method

Algorithm Estimated entropy W-Ratio
MCL 3832.066 0.71434

Entropy 2604.859 0.45628
hclust1 6094.500 0.94477
hclust2 5196.884 0.77836

MCL = Markov chain clustering; Entropy= entropy-based clustering; hclust1 = hierarchical clustering algorithms based
on Jaccard coefficient; hclust2 = hierarchical clustering algorithms based on Simple matching coefficient.

In this data, 97.8 percent of MSC code pairs has a value 1 as a Jaccard coefficient. This means that
the number of MSC code pairs used in different papers is extremely small. hclust2 shows the smallest
simple matching coefficient; however, hclust1 and hclust2 insert most MSC codes into one or two big
clusters (Table 4).

Next, we calculate the estimated entropy value Ĥ(C) (3.1) with the disjoint clusters C1, . . . ,CK of
each clustering algorithm and the W-Ratio as another evaluation measure. Let T = {T1,T2, . . . ,TP}
be the set of documents (papers) where an pth paper Tp contains mp MSC codes, where 1 ≤ p ≤ P.
For given clustering set C, W-Ratio is defined as

W(C) =

∑K
k=1

∑
i, j∈Ck

∑P
p=1 Wp(i, j)∑

i, j∈C
∑P

p=1 Wp(i, j)
,

where

Wp(i, j) =


1

mp(mp − 1)
, if an pth document Tp contains distinct codes i and j,

0, if i = j or an pth document Tp does not contain codes i or j.

Note that to get relatively high W-Ratio, the pairs of MSC code with the large number of papers
containing them tend to be in the same cluster.

Table 5 shows the estimated entropy value and W-Ratio value of four algorithms. The estimated
entropy of the Markov Chain clustering (MCL) algorithm is 3832.066, and hclust1 and hclust2 have
larger entropies. The entropy-based algorithm, the expected entropy value of K disjoint clusters is
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Figure 3: Estimated entropy values of graph clustering algorithms. MCL = Markov chain clustering; Entropy=
entropy-based clustering; hclust1 = hierarchical clustering algorithms based on Jaccard coefficient; hclust2 =

hierarchical clustering algorithms based on Simple matching coefficient.

decreasing on iterations and we can see that it converges to the smallest amount, 2604.859 (Figure
3). MCL and hclust1 algorithms have relatively high W-Ratio values. Note the entropy-based algo-
rithm that makes clustering groups relatively uniform, which does not consider the number of papers
containing the same MSC codes, has a relatively low W-Ratio value. However, the hclust2 algorithm
having one or two dominantly big clusters has a relatively high W-Ratio value despite not considering
the effectiveness of the number of papers containing the same MSC codes.

5. Concluding remarks

In this paper, we compare appropriate two graph clustering methods for grouping Mathematical Sub-
ject Classification (MSC) codes according to similarities. The hclust1 and hclust2 clustering algo-
rithms have one or two dominantly big clusters; therefore, we compare the Markov chain and entropy-
based clustering algorithms making clustering groups relatively uniform. The MCL clustering algo-
rithm has a higher entropy expectation value than the entropy-based clustering algorithm minimizing
the expected entropy of the partition. The MCL clustering algorithm has a larger W-Ratio value than
the entropy-based clustering algorithm since the MCL algorithm considers the number of papers con-
taining the same MSC codes; however, the entropy-based clustering algorithm does not. Therefore,
we conclude that the MCL clustering algorithm is suitable for clustering the MSC codes.
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