• Title/Summary/Keyword: ceramic-metal crown

Search Result 106, Processing Time 0.024 seconds

Evaluation of fitness of metal-ceramic crown fabricated by cobalt-chrome alloy (코발트-크롬 합금으로 제작된 금속-도재관의 적합도 평가)

  • Kim, Jae-Hong;Kim, Won-Soo;Kim, Ki-Baek
    • Journal of Korean society of Dental Hygiene
    • /
    • v.13 no.2
    • /
    • pp.361-368
    • /
    • 2013
  • Objectives : The purpose of this in vitro study was to evaluate the effect of firing cycles on the marginal and internal fit of metal ceramic crown. Methods : Ten same cases of stone models (abutment teeth 11) were manufactured. Ten cobalt-chrome cores were made per each models and the marginal and internal fit was evaluated through a silicone replica technique. The marginal and internal fit of specimens was measured twice. The first measurement was done after manufacturing cobalt-chrome alloy core and the second measurement was done after porcelain firing. T-test of paired sample for statistical analysis was executed with SPSS 12.0K for Windows (${\alpha}$=0.05). Results : Mean(SD) marginal and internal fit were 77.1(23.3) ${\mu}m$ for the cobalt-chrome alloy core group and 84.4(21.9) ${\mu}m$ for the metal-ceramic crown group. They were statistically significant differences between groups for marginal and internal fit (p<.05). Conclusions : All metal ceramic crowns showed marginal and internal fit ranged within the current clinical recommendations.

A study on the difference of Ceramic fracture strength according to the metal depth (금속의 두께가 도재의 파절강도에 미치는 영향)

  • Shin, Mu-Hak;Choi, Un-Jae;Kim, Yoong-Won
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.89-95
    • /
    • 2005
  • In the manufacture of ceramo-metal crown, difference of fracture strength according to the metal depth has been known to be an important influence on enough intensity and internal stress to endure an occlusion-pressure as well as aesthetics of rehabilitating similar colour such as natural teeth. Depth of ceramic material could be determined by that of metal in three groups: first case of thin depth, second case of thick depth, and third case of constant depth. For the enhancement of the fracture strength between metal and ceramic materials and aesthetic satisfaction, a study on the bonding force, fracture strength, and aesthetics have been required more. In this study, therefore metal coping were made in three groups of A, B and C by using both ceramic powder of Norithe and metal of Columbium, which have been used primarily in the market. A group was made in $0.2mm\times10mm\times10mm$, B group was made in $0.4mm\times10mm\times10mm$, and, C group was made in $0.8mm\times10mm\times10mm$, respectively. The number of metal coping in each group was 10, and total sample numbers used in this study were 30 metal copings. After these metal coping tissue were in the process of build-up in 1.5mm constant depth of porcelain, firing, and glazing, the fracture strength about each metal coping tissue was investigated using oil press. It was found that the average values of durable occlusion pressure for separation of ceramic material in the porcelain fused to metal crown (PFM) in the each group showed the increasing order of A group (30 bar), B group (42 bar), and C group (44 bar), respectively. Proper depth of metal coping in the PFM was considered to be 0.4mm in the B group because this metal size showed higher durable property to the occlusion pressure and better coupling strength in the ceramo-metal crown.

  • PDF

Evaluation of the marginal and internal gap of metal-ceramic crown fabricated with a selective laser sintering technology: two- and three-dimensional replica techniques

  • Kim, Ki-Baek;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • PURPOSE. One of the most important factors in evaluating the quality of fixed dental prostheses (FDPs) is their gap. The purpose of this study was to compare the marginal and internal gap of two different metal-ceramic crowns, casting and selective laser sintering (SLS), before and after porcelain firing. Furthermore, this study evaluated whether metal-ceramic crowns made using the SLS have the same clinical acceptability as crowns made by the traditional casting. MATERIALS AND METHODS. The 10 study models were produced using stone. The 20 specimens were produced using the casting and the SLS methods; 10 samples were made in each group. After the core gap measurements, 10 metal-ceramic crowns in each group were finished using the conventional technique of firing porcelain. The gap of the metal-ceramic crowns was measured. The marginal and internal gaps were measured by two-dimensional and three-dimensional replica techniques, respectively. The Wilcoxon signed-rank test, the Wilcoxon rank-sum test and nonparametric ANCOVA were used for statistical analysis (${\alpha}$=.05). RESULTS. In both groups, the gap increased after completion of the metal-ceramic crown compared to the core. In all measured areas, the gap of the metal cores and metal-ceramic crowns produced by the SLS was greater than that of the metal cores and metal-ceramic crowns produced using the casting. Statistically significant differences were found between cast and SLS (metal cores and metal-ceramic crown). CONCLUSION. Although the gap of the FDPs produced by the SLS was greater than that of the FDPs produced by the conventional casting in all measured areas, none exceeded the clinically acceptable range.

Finite Element Analysis on Stress Distribution in Base Metal-Ceramic Crown Margin Designs (유한요소법을 이용한 비귀금속-도재관 변연부 형태에 따른 응력 분포 분석)

  • Lee, Myung-Kon;Shin, Jung-Woog;Kim, Myung-Duk
    • Journal of Technologic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.79-88
    • /
    • 2000
  • The objective of this finite element method study was to analyze the stress distribution induced in a maxillary central incisor Ni-Cr base metal coping ceramic crowns with various margin design. Margin designs of crown in this experiment were knife-edge metal margin on chamfer finishing line of tooth preparation(M1), butt metal margin on shoulder finishing line(M2), reinforced butt metal margin on shoulder finishing line(M3), beveled metal margin on bevelde shoulder finishing line(M4). Two- dimensional finite element models of crown designs were subjected to a simulated biting force of 100N which was forced over porcelain near the lingual incisal edge. Base on plane stress analysis, the maxium von Miss stresses(Mpa) in porcelain venner was 0.432, in metal coping was 0.579, in dentin abutment was 0.324 for M1 model, and M2 model revealed in porcelain was 0.556, in metal coping was 0.511, in dentin was 0.339, and M3 model revealed in porcelain was 0.556, in metal coping was 0.794, in dentin was 0.383 for M4 model. All values of each material in metal-ceramic crown were much below the critical failure values.

  • PDF

Comparative study in marginal accuracy of several all ceramic crowns (전부도재관의 변연 적합도 비교평가)

  • Kim, Jeong-Mi;Jeoung, Su-Ha
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.87-92
    • /
    • 2008
  • Purpose: In this study, we tried to compare marginal accuracy when produce ceramic crown using all ceramic materials and existent metal-ceramic system. Material and methods: All-ceramic systems were E-max (Ivoclar/Vivadent, Lichtenstein), Lava(3M, U.S.A.) and Wol-ceram(Teamziereis, Germany). Metal-ceramic system(PFG) was composed of Au-Pt alloy (Metalor, Switzerlandand) and overlying ceramic(D-sign, Ivoclar/Vivadent, Lichtenstein). We fabricated metal master die with upper diameter of 7.95mm, bottom diameter of 9.00mm, height of 5.00mm, and taper of $6^{\circ}$. All ceramic system used 0.5mm thickness ceramic coping, while metalceramic system used 0.3 thickness metal coping. By adding dentin and enamel ceramics on each coping, a crown with a proximal thickness of 1.0 mm and occlusal thickness of 2.0mm was fabricated. Pressure of 2kg was applied for 10 seconds on each crown with static load compressor. Before and after cementation, we measured the marginal gap at 4 points of each crown using optical microscope. The data was analyzed using a Student's t test and repeated-measures of analyses of variance(ANOVA) followed by a Bonferroni test. A p value<0.05 was considered significant. Results: As experiment results, marginal accuracy of wol-ceram and Lava is no good when compared with marginal accuracy of PFG. But marginal accuracy of E.max is good when compared with PFG. This result showed not significant. The marginal accuracy of E.max is good when compared with marginal accuracy of wol-ceram and Lava. Conclusion: The marginal accuracy of E.max is very good when compared with marginal accuracy of another group.

  • PDF

A Study on improvements in manufatured technique of all Ceramic Crown (전부도재관 기법 개선에 관한 연구)

  • Shin, Moo-Hak;Kim, Yeon-Soo;Choi, Un-Jea;Chung, Hee-Sun
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.9-15
    • /
    • 2002
  • A new kind of 'All Ceramic Crown' could be manufactured by making improvements in the manufacturing technique for the current 'All Ceramic Crown' which does not use a special ceramic but rather a general one as a substitute. If we use the manufacturing technique for the 'All Ceramic Crown', metal coping and core are not produced. The effects of the new manufacturing technique for the 'All Ceramic Crown' are as follows: First. We do not need to use new material or special machinery or tools. Second. We can use general machinery and tools. Third. Using the basic 'All Ceramic Technique', we anticipate improvement in learning in our students. Forth. We can save effort, materials and time. Fifth. The technique also has advantages for esthetic 'temporary crown'.

  • PDF

Comparison of the Marginal Fitness of Ceramic Co-Cr Metal Crown (도재용 코발트-크롬 금속관의 변연적합도 비교)

  • Jeon, Byung-Wook;Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.37 no.2
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: In this study, the marginal fitness of ceramic Co-Cr metal crown made by precision casting, milling, and selective laser melting method were compared. Methods: The ceramic Co-Cr metal crown manufactured by precision casting used the lost wax(LC specimen) method. The abutment were scanned and then made by milling(CM specimen), selective laser melting(CS specimen) method. The specimen were cut bucco-lingual and mesio-distal, and absolute marginal discrepancy and marginal gap were measured using a digital microscope. The surface roughness of the crown was also observed. Results: On the bucco-lingual axial, absolute marginal discrepancy was the LC specimen $31.72({\pm}4.58){\mu}m$, the CM specimen $78.29({\pm}3.28){\mu}m$ and the CS specimen $143.13({\pm}3.83){\mu}m$, respectively. On the bucco-lingual axial, marginal gap was the LC specimen $22.70({\pm}1.46){\mu}m$, the CM specimen $22.70({\pm}1.49){\mu}m$ and CS specimen $99.60({\pm}1.57){\mu}m$, respectively. Conclusion: For ceramic Co-Cr metal crowns, LC specimen was superior for absolute marginal discrepancy and marginal gap. The surface of metal crowns by selective laser melting were the roughest.

MARGINAL FIT OF THE DIGIDENT CAD/CAM ZIRCONIA CERAMIC CROWNS

  • Kim Yong-Sun;Yang Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.275-283
    • /
    • 2006
  • Statement of problem. There have been many studies about marginal discrepancy of single restorations made by various systems and materials. However most of the statistical inferences are not definite because of sample size, measurement number, measuring instruments, etc, and there have been few studies about the marginal fit of the Digident CAD/ CAM zirconia ceramic crowns. Purpose. The purpose of this study was to compare the marginal fit of the anterior single restorations made by using the Digident CAD / CAM zirconia ceramic crowns with metal-ceramic restorations and to obtain more accurate information by using a large enough sample size and by making sufficient measurements per specimen. Material and Methods. The crowns were made from one extracted maxillary central incisor pre-pared with a 1mm shoulder margin and $6^{\circ}$ taper walls by milling machine. The in vitro marginal discrepancies of the digident CAD / CAM zirconia ceramic crowns and control groups(metal ceramic crowns) were evaluated and compared. Twenty crowns per each system were fabricated. Measurements of a crown were recorded at 50 points that were randomly selected for marginal gap evaluation. Parametric statistical analysis was performed for the results. Conclusion. Within the limitations of this in vitro study, the following conclusions were drawn: 1. Mean gap dimensions and standard deviations at the marginal opening for maxillary incisal crowns were $88{\pm}10{\mu}m$ for the control (metal-ceramic crowns), $92{\pm}4{\mu}m$ for Digident CAD / CAM zirconia ceramic crowns. 2. Marginal gap between Digident CAD / CAM zirconia ceramic crowns and metal ceramic crowns did not show significant difference (P>.05). 3. The Digident CAD/ CAM zirconia ceramic crowns and metal ceramic crowns showed clinically acceptable marginal discrepancy.

A comparison of the fidelity of various zirconia-based all-ceramic crowns fabricated with CAD/CAM systems (수종의 CAD/CAM 시스템으로 제작한 지르코니아 기반 완전도재관의 적합도 비교)

  • Kim, Sung-Jun;Jo, Kwang-Hun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.148-155
    • /
    • 2009
  • Statement of problem: The interest in all-ceramic restorations has increased as more techniques have become available. With the introduction of machinable dental ceramics and CAD/CAM systems there is a need to evaluate the quality levels of these new fabrication techniques. Purpose: This study is to evaluate the crown fidelity(absolute marginal discrepancy and internal gap) of various zirconia-based all-ceramic crowns fabricated with different CAD/CAM(computer-assisted design/computer-assisted manufacturing) systems and conventional cast metal-ceramic crowns. Material and methods: A resin tooth of lower right second premolar was prepared. After an impression was taken, one metal master die was made. Then 40 impressions of metal master dies were taken for working dies. 10 crowns per each system were fabricated using 40 working dies. Metal-ceramic crowns were cast by using the conventional method, and Procera, Lava, and Cerec inLab crowns were fabricated with their own CAD/CAM manufactruing procedures. The vertical marginal discrepancies and internal gaps of each crown groups were measured on a metal master die without a luting agent. The results were statistically analyzed using the one-way ANOVA and Tukey's HSD test. Results: 1. Vertical marginal discrepancies were $50.6{\pm}13.9{\mu}m$ for metal-ceramic crowns, $62.3{\pm}15.7{\mu}m$ for Procera crowns, $45.3{\pm}7.9{\mu}m$ for Lava crowns, and $71.2{\pm}2.0{\mu}m$ for Cerec inLab crowns. 2. The Internal gaps were $52.6{\pm}10.1{\mu}m$ for metal-ceramic crowns, $161.7{\pm}18.5{\mu}m$ for Procera crowns, $63.0{\pm}10.2{\mu}m$ for Lava crowns, and $73.7{\pm}10.7{\mu}m$ for Cerec inLab crowns. Conclusion: 1. The vertical marginal discrepancies of, 4 crown groups were all within the clinically acceptable range($120{\mu}m$). 2. The internal gaps of LAVA, Cerec inlab, and metal-ceramic crowns were within clinically acceptable range except Procera crown($140{\mu}m$).