• Title/Summary/Keyword: ceramic speaker

Search Result 9, Processing Time 0.026 seconds

Characteristics and Fabrication of Multi-Layered Piezoelectric Ceramic Actuators for Speaker Application (스피커 응용을 위한 적층형 압전 세라믹 액츄에이터 제조 및 특성)

  • Lee, Min-seon;Yun, Ji-sun;Park, Woon Ik;Hong, Youn-Woo;Paik, Jong Hoo;Cho, Jeong Ho;Park, Yong-Ho;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.601-607
    • /
    • 2016
  • Piezoelectric thick films of soft $Pb(Zr,Ti)O_3$ (PZT) based commercial material (S55) were fabricated using a conventional tape casting method. Ag-Pd electrodes were printed on the piezoelectric film at room temperature and all 5 layered films with a dimension of $12mm{\times}16mm$ were successfully laminated for a multi-layered piezoelectric ceramic actuator. The laminated specimens were co-fired at $1,100^{\circ}C$ for 1 h. A flat layered and dense microstructure was obtained for the $112{\mu}m$ thick piezoelectric actuator after sintering process. Thereafter, a prototype piezoelectric speaker was fabricated using the multi-layered piezoelectric ceramic actuator which can operate as a bimorph. Its SPL (sound pressure level) characteristic was also evaluated for speaker application. Frequency response revealed that the output SPL with a root mean square voltage of 10 V increased gradually to the highest peak of 87.5 dB for 1.5 kHz and exhibited a relatively stable behavior over the measured frequency range (${\leq}20kHz$) at a distance of 10 cm, implying that the fabricated piezoelectric speaker is potential for speaker applications.

Evaluation of Piezoelectric Properties in Pb(Zr1Ti)O3-PVDF Composites for Thick Film Speaker Application (후막 스피커 응용을 위한 Pb(Zr1Ti)O3-PVDF 복합체의 압전 특성 평가)

  • Son Yong-Ho;Kim Sung-Jin;Kim Young-Min;Jeong Joon-Seok;Ryu Sung-Lim;Kweon Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.966-970
    • /
    • 2006
  • We reported on characteristics of the piezoelectric ceramic-polymer composite for the application of the thick-film speaker. The PVDF-PZT composites were fabricated to incorporate the advantages of both ceramic and polymer with various mixing ratios by 3-roll mill mixer. The composite solutions were coated by the conventional screen-printing method on ITO electrode coated PET (Polyethylene terephthalate) polymer film. After depositing the top-electrode of silver-paste, 4 kV/mm of DC field was applied at $120^{\circ}C$ for 30 min to poling the composite films. The value of $d_{33}$ (piezoelectric charge constant) was increased when the PZT weight percent was increased. The maximum value of the $d_{33}$ was 24 pC/N at 70 wt% PZT. But the $g{33}$ (piezoelectric voltage constant) showed the maximum value of $32mV{\cdot}m/N$ at 65 wt% of PZT powder. The SPL (sound pressure level) of the speaker fabricated with the 65:35 composite film was about 68 dB at 1 kHz.

Implementation of Ceramic Flat speaker with a D Class Audio Amplifier (D 클래스 오디오 앰프의 세라믹 평판스피커 구현)

  • Yang, Won-Woo;Lee, Sun-Bok;Song, Young-Jun;Lee, Je-Hoon;Hong, You-Sik;Ahn, Jae-Hyeong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.56-61
    • /
    • 2011
  • A class-D audio amplifier is widely used in coil speaker. This paper presented the technique for applying a class-D audio amplifier to the ceramic flat speaker. This technique can be achieved by employing a matching transmitter in order to replace class-G amplifier that is drven by voltage level to class-D amplifier employing power driving method. Consequently, the presented technique can improve the efficiency by making the voltage driving level a litter larger. We evaluate the sound-level efficiency using the various mediums such as wood, plastic, and paper. From the simulation results, the proposed technique employing a class-D audio amplifier rather than a class-G one showed a 10% improvement. The proposed system can be applicable for the mobile appliances as an external slim speaker.

Design and Performance Characteristics of a Broadband Underwater Speaker System (광대역 수중 스피커 시스템의 설계 및 성능 특성)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.5
    • /
    • pp.543-549
    • /
    • 2011
  • An underwater speaker was developed for use as an acoustic deterrent device that transmits acoustic energy through the water omnidirectionally over a broadband frequency range to eliminate marine mammal attacks and to prevent physical damage to the inshore and coastal fishing grounds of Korea. The underwater speaker was constructed of two vibration caps machined from 6061-T6 aluminum alloy and a stack of PZ 26 piezoelectric ceramic rings (Ferroperm Piezoceramics A/S) connected mechanically in series and electrically in parallel. The performance characteristics of the underwater speaker were measured and analyzed in an experimental water tank of $5\;m{\times}5\;m{\times}6\;m$. The peak transmitting voltage response (TVR) was measured at 11.16 kHz with 163.45 dB re $1\;{\mu}Pa$/V at 1m. The underwater speaker showed a near omnidirectional beam pattern at the peak TVR resonance frequency. The usable frequency range was 4-25 kHz with a lower TVR limit of approximately 140 dB. We conclude that this underwater speaker could be satisfactorily used as an acoustic deterrent device against marine mammals, particularly the bottlenose dolphin, to protect catches and fishing grounds as well as the mammals themselves, for example, by keeping them away from fishing gear and/or vessels.

Microstructures and Electrical Properties of PSN-PZT Ceramics for Piezoelectric Speaker (압전 스피커 응용을 위한 PSN-PZT계 세라믹스의 미세구조 분석 및 전기적 특성 평가)

  • Kim, Sung-Jin;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.110-115
    • /
    • 2019
  • $Pb(Sb_{0.5}Nb_{0.5})_x(Zr_{0.51}Ti_{0.49})_{1-x}O_3$ (abbreviation: PSN-PZT) ceramics were synthesized, using conventional bulk ceramic processing technology, with various PSN doping contents. The maximum density of PSN-PZT was 97% of the theoretical density in the samples sintered at $1,250^{\circ}C$. The maximum values of the piezoelectric properties achieved using the conventional processes were: $k_p$ of 0.625, $d_{33}$ of 531 pC/N, and $g_{33}$ of $33mV{\cdot}m/N$. Finally, we fabricated a piezo-speaker with the optimized PSN-PZT ceramics. The SPL of the speaker was measured at a distance of 1 m, with a driving voltage of $40V_{rms}$ in the frequency range of ~300 Hz to 9 kHz. The measured $SPL_{max}$ was at a very high level (95 dB), which was superior in quality in comparison with those of other commercial products.

Characterization of Ag Nanowire Transparent Electrode Fabricated on PVDF Film (PVDF 필름 위에 제작된 고전도도 Ag 나노와이어 투명전극 특성 연구)

  • Ra, Yong-Ho;Park, Hyelim;An, Soyeon;Kim, Jin-Ho;Jeon, Dae-Woo;Kim, SunWoog;Lee, Mijai;Hwang, Jonghee;Lim, Tae Young;Lee, YoungJin
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.366-370
    • /
    • 2019
  • In this study, we have successfully fabricated a highly conductive transparent electrode using Ag nanowires, based on piezoelectric polyvinylidene difluoride (PVDF) film, that can be applied as transparent and flexible speakers. The structural morphology of the Ag nanowires was confirmed by a detailed scanning electron microscopy. Ultraviolet-visible spectroscopy demonstrated that the transparent electrode fabricated by the Ag nanowires exhibited a transmittance of above 70%. The transparent electrode also showed very low sheet resistance with high flexibility. We have further developed an anti-oxidation coating layer by using a tetraethyl orthosilicate-poly trimethyloxyphenylsilane (TEOS-PTMS) slurry technique. It was confirmed that the transmittance and sheet resistance of the antioxidant film depends critically on the humidity of the film surface. We believe such Ag nanowire electrodes are a very promising next-generation transparent electrode technology that can be used in future flexible and transparent devices.

Design of Ultrasonic Speaker with Piezoelectric Ceramic and Fabrication of its Prototypes (압전 세라믹을 이용한 초음파 스피커의 설계 및 제작)

  • 문창호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06d
    • /
    • pp.5-8
    • /
    • 1998
  • 본 논문에서는 지향성이 좋고, 대역폭이 넓은 초음파 스피커를 설계, 제작하는 것을 목표로 하였다. 이를 구현하기 위하여 초음파를 발생시키는데 널리 이용되고 있는 압전 세라믹인 PZT를 사용하였다. 먼저 스피커 제작을 위하여 금속진동판의 종류와 크기, 감도, 대역폭등의 최적값을 도출하여 주변고정, 마디지지, 주변지지의 형태로 스피커를 1차로 제작하여 음압을 측정하였고, 큰 음압을 구현하기 위해 동일한 성능을 가지는 마디지지의 스피커를 60개 배열하여 스피커로서 사용을 검증하였다.

  • PDF

Evaluation of Piezoelectric Properties in Pb(Zr,Ti)$O_3$-PVDF 0-3Type Composites for Thick Film Speaker Application (후막스피커 응용을 위한 Pb(Zr,Ti)$O_3$-PVDF 0-3형 복합체의 압전 특성 평가)

  • Son, Yong-Ho;Kim, Sung-Jin;Jeong, Joon-Seok;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.40-41
    • /
    • 2006
  • In this work, we developed the 0-3 type piezoelectric composite to incorporate the advantages of both ceramic and polymer. The PVDF-PZT composites were fabricated with various mixing ratio by 3-roll mi11 mixer. The composite solutions were coated on ITO bottom-electrode deposited on PET (polyethylene terephthalate) polymer film by the conventional screen-printing method. After depositing the top-electrode of silver-paste, 4kV/mm of DC field was applied at $120^{\circ}C$ for 30min to poling the 0-3 composite film. The value of $d_{33}$ was increased as the PZT weight percent was increases. But the $g_{33}$ value showed the maximum at 65 wt% of PZT powder.

  • PDF

Optimization Study for Material Properties of Piezoelectric Material Using Parameter Estimation Method: Part I. Polycrystal PZT Ceramics (매개변수 평가법을 이용한 압전재료의 재료물성 최적화 연구 Part I. 다결정 PZT 세라믹스)

  • Shin, Ho-Yong;Lee, Ho-Yong;Hong, Il-Gok;Kim, Jong-Ho;Im, Jong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.471-479
    • /
    • 2022
  • Recently, piezoelectric devices, such as ultrasonic surgery, ultrasonic atomizer, and ultrasonic speaker, are analyzed and designed by finite element simulation methods. However, the discrepancy between the design and the experiment results of the device typically occurs due to the inaccuracy of the piezoelectric material properties. To improve the simulation accuracy, the material properties of the PZT ceramics were better refined using parameter estimation method. The material parameters are elastic stiffness cEij and piezoelectric constant eij of PZT ceramics. The impedance curve characteristics for the LTE mode of PZT ceramics were calculated. The mismatch between the simulation and the experimental data were compared and minimized by a least square method. Finally, the simulated impedance data were compared with the experimental data for the various vibration modes of PZT ceramics and the optimized material properties of PZT ceramics were verified. To further verify the accuracy, this method was also applied to piezoelectric PMN-PT single crystals.