Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.2.110

Microstructures and Electrical Properties of PSN-PZT Ceramics for Piezoelectric Speaker  

Kim, Sung-Jin (ZENIXON Co., LTD.)
Kweon, Soon-Yong (Department of Materials Science and Engineering, Korea National University of Transportation)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.2, 2019 , pp. 110-115 More about this Journal
Abstract
$Pb(Sb_{0.5}Nb_{0.5})_x(Zr_{0.51}Ti_{0.49})_{1-x}O_3$ (abbreviation: PSN-PZT) ceramics were synthesized, using conventional bulk ceramic processing technology, with various PSN doping contents. The maximum density of PSN-PZT was 97% of the theoretical density in the samples sintered at $1,250^{\circ}C$. The maximum values of the piezoelectric properties achieved using the conventional processes were: $k_p$ of 0.625, $d_{33}$ of 531 pC/N, and $g_{33}$ of $33mV{\cdot}m/N$. Finally, we fabricated a piezo-speaker with the optimized PSN-PZT ceramics. The SPL of the speaker was measured at a distance of 1 m, with a driving voltage of $40V_{rms}$ in the frequency range of ~300 Hz to 9 kHz. The measured $SPL_{max}$ was at a very high level (95 dB), which was superior in quality in comparison with those of other commercial products.
Keywords
PSN-PZT; Piezoelectric properties; Microstructure; Piezo-speaker; Speaker pressure level;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 IRE Standard Committee, Proc. IRE Standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics, 1961 (IEEE, 1961) p. 1161.
2 Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity for Fired White Ware Products, ASTM C373-72, 1972.
3 S. J. Kim, Electr. Electron. Mater. 19, 13 (2006).
4 S. H. Lee, Electr. Electron. Mater. 19, 24 (2006).
5 S. K. Kim, Electr. Electron. Mater. 19, 33 (2006).
6 S. H. Lee, K. W. Seo, K. P. Ryu, and S. Y. Kweon, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 531 (2006). [DOI: https://doi.org/10.4313/jkem.2006.19.6.531]   DOI
7 Y. H. Son, S. J. Kim, Y. M. kim, J. S. Jeong, S. L. Ryu, and S. Y. Kweon, J. Korean Inst. Electr. Electron. Mater. Eng., 19, 966 (2006). [DOI: https://doi.org/10.4313/jkem.2006.19.10.966]   DOI
8 Y. Xu, Ferroelectric Materials and Their Application (Elsevier Science, Amsterdam, 1991) p. 104.
9 M. S. Yoon, I. Mahmud, and S. C. Ur, Ceram. Int., 39, 8581 (2013). [DOI: https://doi.org/10.1016/j.ceramint.2013.04.031]   DOI
10 Y. H. Na, M. S. Lee, J. S. Yun, Y. W. Hong, J. H. Paik, J. H. Cho, J. W. Lee, and Y. H. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 462 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.7.462]   DOI
11 J. H. Yoo, W. H. Woo, D. O. Oh, Y. H. Jeong, K. H. Chung, and S. L. Lyu, J. Korean Inst. Electr. Electron. Mater. Eng., 16, 1195 (2003). [DOI: https://doi.org/10.4313/jkem.2003.16.12s.1195]   DOI
12 J. W. Choi, K. H. Song, H. J. Kim, S. J. Yoon, and K. S. Yoo, J. Sens. Sci. Technol., 16, 120 (2007). [DOI: https://doi.org/10.5369/jsst.2007.16.2.120]   DOI
13 J. B. Choi, K. H. Song, H. J. Kim, S. I. Hwang, and K. S. Yoo, J. Sens. Sci. Technol., 17, 127 (2008). [DOI: https://doi.org/10.5369/jsst.2008.17.2.127]   DOI
14 IRE Standard Committee, Proc. IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric Constants-The Electromechanical Coupling Factor, 1958 (IEEE, 1958) p. 764.