• Title/Summary/Keyword: ceramic nanoparticles

Search Result 192, Processing Time 0.02 seconds

Dielectric and Electro-Optical Properties of Ceramic Nanoparticles Doped Liquid Crystals

  • Porov, Preeti;Chandel, Vishal Singh;Manohar, Rajiv
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.69-78
    • /
    • 2016
  • Liquid crystals are important materials because of their applications in display technology and many other scientific applications. Different mixtures of liquid crystals and their doped samples have gained interest because a single liquid crystal compound cannot fulfill all the required parameters for the display application. The doping can be accomplished with dyes, polymers, or composite nanoparticles among other substance. The addition of nanoparticles can modify the physical properties of the host liquid crystal and enhances the performance of electro-optical devices. The present study is focused on investigations of possible changes in dielectric and electro optical properties of liquid crystals caused by doping with ceramic nanoparticles. Including smaller nanoparticles were found to be better candidates for use in suppressing the unwanted ion effects in liquid crystal displays.

Fabrication and characterization of solution processable organosilane-modified colloidal titania nanoparticles and silica-titania hybrid films

  • Kang, Dong Jun;Park, Go Un;Lee, Hyeon Hwa;Ahn, Myeong Sang;Park, Hyo Yeol
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.78-81
    • /
    • 2012
  • Colloidal titania nanoparticles were synthesized by a simple sol-gel process. The obtained nanoparticles showed high crystallinity and were of the anatase type. These crystalline colloidal titania nanoparticles were organically modified using methyl- and glycidyl-grafted silanes in order to enhance their stability and solution processability. The stabilized colloidal titania nanoparticles could be dispersed homogeneously without aggregation and converted into silica-titania hybrid films with the heterogeneous Si-O-Ti bonds by a low-temperature solution process. The fabricated silica-titania hybrid films showed high transparency (~ 90%) in the visible range, and low RMS roughness (<1 nm). Therefore, the organosilane-modified crystalline colloidal titania nanoparticles can be used in solution-processable functional coatings for electro-optical devices.

High Throughput Magnetic Separation for Human DNA by Aminosilanized Iron Oxide Nanoparticles (아미노실란화 철산화물 나노입자를 이용한 Human DNA의 초고속 자성분리)

  • Kang, Ki-Ho;Chang, Jeong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.605-609
    • /
    • 2008
  • This work describes the preparation of functionalized magnetic nanoparticles(MNPs) and their bioapplication to human DNA separation. Silica coated MNPs were prepared by changing the volume ratio of tetraethyl orthosilicate(TEOS) for controlled coating thickness on the original nanoparticle of MNPs. The sol-gel process in silica coating on MNPs surface was adapted for relatively mild reaction condition, low-cost, and surfactant-free. And then amino functionalized magnetic nanoparticles were synthesized using amine groups as surface modifiers. The result of adsorption efficiency for human DNA with amino-functionalized silica coated MNPs was calculated as a function of the number of amine groups.

Polyamine Group Assembled Silica Coated Ferrite Nanoparticle for Lambda DNA Detection

  • Park, Moo-Eon;Chang, Jeong-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1193-1194
    • /
    • 2006
  • The magnetic ferrite nanoparticles were synthesized and coated by silica precursor in controlling the coating thicknesses and sizeses. The surface modification was performed with amino-functionalized organic silanes on silica coated magnetic nanoparticles. The use of functionalized self-assembled magnetic ferrite nanoparticles for nucleic acid separation process give a lot of advantages rather than the conventional silica based process.

  • PDF

A Study on Enhancement of MIR Transmittance of Hydrothermally Synthesized ZnS Nanoparticles with Sintering Pressure (수열합성된 황화아연 나노입자의 소결 압력에 따른 중적외선향상에 관한 연구)

  • Yeo, Seo-Yeong;Park, Buem-Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.63-67
    • /
    • 2020
  • This study investigated the influence of various sintering pressures of ZnS nanoparticles prepared by hydrothermal synthesis performed at 220 ℃ for 20 h. The hydrothermally synthesized ZnS nanoparticles formed a cubic phase. The ZnS nanoparticles were sintered using a hot-press process at 850 ℃ for 2 h under pressures of 10, 20, 30, 40, 50, 60, and 70 MPa. The ZnS ceramics indicate the cubic phase is the major phase and the hexagonal phase is the minor phase. In the ZnS ceramics, as the sintering pressure increased, a decrement in the hexagonal phase was confirmed. When the sintering pressure equaled or exceeded 30 MPa, the transmittance and density improved with reductions in porosity and hexagonal phase. A sintering pressure of 60 MPa delivered the highest transmittance (69.7%).

Synthesis of Size Controlled Gold Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) Effect (크기가 조절된 골드 나노 입자의 합성과 표면 라만 증강의 효과)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.462-465
    • /
    • 2019
  • Nanoscale gold particles have been intensively researched due to their potential applications in catalysis, electronics, plasmonics, and biological assays. In our study, we fabricated gold nanoparticles (NPs) that were synthesized in an aqueous environment via the reduction of $HAuCl_4$ by ascorbic acid (AC) with a sodium citrate (SC) surfactant. Highly monodispersed gold particles with sizes ranging from 123 to 184 nm were prepared in high-yield by a surfactant concentration. The structural and optical properties of the synthesized gold nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. The prepared nanoparticles exhibited efficient surface-enhanced Raman scattering (SERS) properties that were dependent on their on size.

Propylene Hydrogenation over Cubic Pt Nanoparticles Deposited on Alumina

  • Yoo, Jung-Whan;Lee, Sung-Min;Kim, Hyung-Tae;El-Sayed, M.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.843-846
    • /
    • 2004
  • Pt nanoparticles loaded on alumina through an impregnation at room temperature was prepared using $K_2PtCl_4$ and acrylic acid as capping material. Transmission electron microscopy showed that the deposited Pt particles indicate ca. 80% cubic shapes with a narrow distribution of 8-10 nm in size. Propylene hydrogenation over the catalyst has been carried out to evaluate their catalytic performance by the values of activation energy. It is determined from the initial rate, reaction order, and rate constant and is found to be $9.7{\pm}0.5$ kcal/mol. This value has been discussed by comparing to those of encapsulated- and truncated octahedral Pt nanoparticles deposited on alumina, respectively, to study influence of the particle size and shape, and capping material used on the activation energy.

Structural Properties of ZnS Nanoparticles by Hydrothermal Synthesis Process Conditions and Optical Properties of Ceramic (수열합성 공정 변화에 따른 ZnS 나노분말의 구조 특성과 소결체의 광학적 특성)

  • Yeo, Seo-Yeong;Kwon, Tae-Hyeong;Kim, Chang-Il;Yun, Ji-Sun;Jeong, Young-Hun;Hong, Youn-Woo;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.392-397
    • /
    • 2018
  • In this paper, the ZnS nanoparticles were synthesized according to the process conditions of hydrothermal synthesis. When the molar ratio of Zn to S was 1:1.2, it was confirmed that it had a cubic single phase and a high crystal phase. After the molar ratio is fixed, hydrothermal synthesis was conducted at $180^{\circ}C$ for 24, 36, 72 and 96 h in order to confirm the structural change with the change of hydrothermal synthesis times. As the hydrothermal synthesis times increased, the particle size increased. The hydrothermal synthesized particle size for 72 h was considered to be suitable for sintering. The ZnS ceramic had a density of 99.7% and an excellent transmittance of ~70% in the long-wavelength region.

Role of Different Oxide to Fuel Ratios in Solution Combustion Synthesis of SnO2 Nanoparticles

  • Chavan, Archana U.;Kim, Ji-Hye;Im, Ha-Ni;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.122-127
    • /
    • 2016
  • Tin oxide ($SnO_2$) nanoparticles have been synthesized by solution combustion method using citric acid as a fuel. The oxide to fuel ratio has been varied to obtain ultrafine nanoparticles with better surface area; such particles will be useful in many applications. With this synthesis method, spherical particles are formed having a particle size in the range of 11-30 nm and BET surface area of ~ $24m^2/g$. The degree of agglomeration of $SnO_2$ nanoparticles has been calculated.

Photo-catalytic Properties of Nanotubes Synthesized using TiO2 Nanoparticles

  • Kim, Hyun;Kim, Dong Yun;Yang, Bee Lyong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.239-243
    • /
    • 2018
  • Up to now, microstructure changes of photocatalysts have been studied to improve photocatalytic activity. Especially, to improve the adsorption of reactants and reactive sites, porous and fine crystal structures have received much attention because of their large specific surface area. In this study, $TiO_2$ nanotubes were synthesized by hydrothermal method using $TiO_2$ nanoparticles; nanotubes were evaluated by oxidized methylene blue reduction test. Using synthesized $TiO_2$ nanotubes, results of TEM showed that the $TiO_2$ nanoparticles were changed into folding sheets and nanotubes. XRD results showed that the peaks of the nanoparticles almost disappeared and only the rutile (110) and anatase (200) peaks were observed. Comparison of photocatalytic properties of nanoparticles and nanotube structures was performed by measuring the UV-vis absorbance with reducing oxidized methylene blue. As a result, the reduction rate of nanotubes was found to be $0.24{\mu}mol/s$, which was 2.6 times higher than the rate of reduction of nanoparticles.