Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.6.392

Structural Properties of ZnS Nanoparticles by Hydrothermal Synthesis Process Conditions and Optical Properties of Ceramic  

Yeo, Seo-Yeong (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Kwon, Tae-Hyeong (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Kim, Chang-Il (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Yun, Ji-Sun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Jeong, Young-Hun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Hong, Youn-Woo (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Cho, Jeong-Ho (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Paik, Jong-Hoo (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.6, 2018 , pp. 392-397 More about this Journal
Abstract
In this paper, the ZnS nanoparticles were synthesized according to the process conditions of hydrothermal synthesis. When the molar ratio of Zn to S was 1:1.2, it was confirmed that it had a cubic single phase and a high crystal phase. After the molar ratio is fixed, hydrothermal synthesis was conducted at $180^{\circ}C$ for 24, 36, 72 and 96 h in order to confirm the structural change with the change of hydrothermal synthesis times. As the hydrothermal synthesis times increased, the particle size increased. The hydrothermal synthesized particle size for 72 h was considered to be suitable for sintering. The ZnS ceramic had a density of 99.7% and an excellent transmittance of ~70% in the long-wavelength region.
Keywords
ZnS nanoparticles; Hydrothermal synthesis; Hot pressing; Optical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Chen, L. Zhang, J. Zhang, P. Liu, T. Zhou, H. Zhang, D. Gong, D. Tang, and D. Shen, Opt. Mater., 50, 36 (2015). [DOI: https://doi.org/10.1016/j.optmat.2015.03.058]   DOI
2 J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, and C. L. Bai, Angew. Chem. Int. Ed., 117, 1295 (2005). [DOI: https://doi.org/10.1002/ange.200462057]   DOI
3 X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg, Prog. Mater. Sci., 56, 175 (2011). [DOI: https://doi.org/10.1016/j.pmatsci.2010.10.001]   DOI
4 A. Rogalski and K. Chrzanowski, Metrol. Meas. Syst., 21, 565 (2014). [DOI: https://doi.org/10.2478/mms-2014-0057]   DOI
5 Y. W. Hong and J. H. Paik, J. Korean Ceram. Soc., 17, 72(2014).
6 C. Chlique, G. Delaizir, O. Merdrignac-Conance, C. Roucau, M. Dolle, P. Rozier, V. Bouquet, and X. H. Zhang, Opt. Mater., 33, 706 (2011). [DOI: https://doi.org/10.1016/j.optmat.2010.10.008]   DOI
7 Y. D. Kim, K. Sonezaki, H. Maeda, and A. Kato, J. Mater. Sci., 32, 5101 (1997). [DOI: https://doi.org/10.1023/A:1018613316157]   DOI
8 Z. Shizen, M. A. Hongli, R. Jean, M. C. Odile, A. Jean-Luc, L. Jacques, and Z. Xianghua, J. Optoelectron. Adv. Mater., 1, 667 (2007).
9 G. Bernard-Granger, N. Benameur, C. Guizard, and M. Nygren, Scripta Mater., 60, 164 (2009). [DOI: https://doi.org/10.1016/j.scriptamat.2008.09.027]   DOI
10 T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, Sei technical review, No 69. (Sumitomo electric, Osaka, 2009) p. 48.
11 S. K. Dutta and G. E. Gazza, Mater. Res. Bull., 4, 791 (1969). [DOI: https://doi.org/10.1016/0025-5408(69)90001-4]   DOI
12 A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, and D. T. Ellerby, J. Am. Ceram. Soc., 87, 1170 (2004). [DOI: https://doi.org/10.1111/j.1551-2916.2004.01170.x]   DOI
13 T. H. Kwon, S. Y. Yeo, C. S. Park, C. I. Kim, Y. W. Hong, and J. H. Paik, J. Sensor Sci. & Tech., 26, 360 (2017). [DOI: https://doi.org/10.5369/JSST.2017.26.5.360]
14 G. H. Yue, P. X. Yan, D. Yan, X. Y. Fan, M. X. Wang, D. M. Qu, and J. Z. Liu, Appl. Phys. A., 84, 409 (2006). [DOI: https://doi.org/10.1007/s00339-006-3643-8]
15 B. Meyer, Chem. Rev., 76, 367 (1976). [DOI: https://doi.org/10.1021/cr60301a003]   DOI
16 R. Kugel and H. Taube, J. Phys. Chem., 79, 2130 (1975). [DOI: https://doi.org/10.1021/j100587a014]   DOI
17 M. N. Rahaman, Ceramic Processing and Sintering, 2nd ed. (Taylor and Francis, Boca Raton, FL, 2003).
18 B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, and J. C. Bernede, Mater. Chem. Phys., 68, 175 (2001). [DOI: https://doi.org/10.1016/S0254-0584(00)00351-5]   DOI
19 A. Kajbafvala, S. Zanganeh, E. Kajbafvala, H. R. Zargar, M. R. Bayati, and S. K. Sadrnezhaad, J. Alloy. Compd., 497, 325 (2010). [DOI: https://doi.org/10.1016/j.jallcom.2010.03.057]   DOI
20 C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. Zhang, and J. L. Adam, J. Am. Ceram. Soc., 96, 3070 (2013). [DOI: https://doi.org/10.1111/jace.12570]
21 P. Singhal, P. V. Ghorpade, G. S. Shankarling, N. Singhal, S. K. Jha, R. M. Tripathi, and H. N. Ghosh, Nanoscale, 4, 1823 (2016). [DOI: https://doi.org/10.1039/c5nr07605f]
22 H. M. Park and J. S. Park, Fourier-transform Infrared Spectroscopy (School of Research Equipment Engineers, Daejeon, 2013) p. 51.