• 제목/요약/키워드: ceramic nanoparticles

검색결과 192건 처리시간 0.022초

Effect of Passivation on the Sintering Behavior of Submicron Nickel Powder Compacts for MLCC Application

  • Jo, Gi-Young;Lee, Kwi-Jong;Kang, Suk-Joong L.
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.405-410
    • /
    • 2013
  • During sintering of Ni-electrode multi-layer ceramic capacitors (MLCCs), the Ni electrode often becomes discontinuous because of its lower sintering temperature relative to that of $BaTiO_3$. In an attempt to retard the sintering of Ni, we introduced passivation of the Ni powder. To find the optimal passivation conditions, a thermogravimetric analysis (TGA) was conducted in air. After passivation at $250^{\circ}C$ for 11 h in air, a nickel oxide shell with a thickness of 4-5 nm was formed on nickel nanoparticles of 180 nm size. As anticipated, densification of the compacts of the passivated Ni/NiO core-shell powder was retarded: the starting temperature of densification increased from ${\sim}400^{\circ}C$ to ${\sim}600^{\circ}C$ in a $97N_2-3H_2$ (vol %) atmosphere. Grain growth was also retarded during sintering at temperatures of 750 and $1000^{\circ}C$. When the sintering atmosphere was changed from wet $99.93N_2-0.07H_2$ to wet $99.98N_2-0.02H_2$, the average grain size decreased at the same sintering temperature. The conductivity of the passivated powder sample sintered at $1150^{\circ}C$ for 8 h in wet $99.93N_2-0.07H_2$ was measured to be $3.9{\times}10^4S/cm$, which is comparable with that, $4.6{\times}10^4S/cm$, of the Ni powder compact without passivation. These results demonstrate that passivation of Ni is a viable means of retarding sintering of a Ni electrode and hence improving its continuity in the fabrication of $BaTiO_3$-based multi-layer ceramic capacitors.

Hydroxyapatite-collagen 나노복합재료에서의 불균질 핵생성 (Heterogeneous Nucleation of Hydroxyapatite-collagen Nanocomposite)

  • 장명철
    • 한국세라믹학회지
    • /
    • 제38권11호
    • /
    • pp.1030-1036
    • /
    • 2001
  • 공침법을 이용하여 수산화아파타이트[HAP]-콜라겐[COL] 나노복합재료를 제조하였다. HAP 결정과 COL 분자 사이의 화학결합형성을 확산반사법 FT-IR 및 투과전자현미경(TEM) 관찰로부터 확인하였다. 제조 시에 첨가되는 콜라겐 단백질의 농도가 높으면 미세한 아파타이트 나노결정의 콜라겐 복합체가 만들어지고 첨가되는 단백질의 농도가 낮으면 아파타이트 결정이 비교적 크게 발달하였다. FT-IR과 전자선 회절(electron diffraction)로부터 콜라겐 매체에 발달된 아파타이트 결정입자 들은 콜라겐 분자의 c 축을 따라 정렬하는 것임을 알 수 있었다. 칼슘이온 농도와 인산이온 농도를 일정하게 유지하는 수용액 계에 용해되어 있는 콜라겐 단백질의 농도는 아파타이트 결정의 발달을 위한 불균질 핵생성 위치를 제공하는 중요한 역할을 하고 있다. 콜라겐의 농도가 높으면 칼슘이온(Ca$^{2+}$)에 대한 핵생성을 위한 활성화 위치를 많이 제공하게 되며, 이는 핵생성 위치에 대한 칼슘이온 농도가 상대적으로 낮아지는 것에 대응하게 된다.

  • PDF

A Facile Combustion Synthesis Route for Performance Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) as a Robust Cathode Material for IT-SOFC

  • Yoo, Young-Sung;Namgung, Yeon;Bhardwaj, Aman;Song, Sun-Ju
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.497-505
    • /
    • 2019
  • Lanthanum-based transition metal cations containing perovskites have emerged as potential catalysts for the intermediate-temperature (600-800℃) oxygen reduction reaction (ORR). Here, we report a facile acetylacetone-assisted combustion route for the synthesis of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428) cathodes for intermediate-temperature solid-oxide fuel cells (IT-SOFCs). The as-prepared powder was analyzed by thermogravimetry analysis-differential scanning calorimetry. The powder calcined at 800℃ was characterized by X-ray diffraction, scanning electrode microscopy, energy dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller surface area measurements. It was found that the porosity of the air electrode significantly increased by utilizing the nanostructured LSCF6428 instead of commercial powder. The performance of a single cell fabricated with the nanostructured LSCF6428 cathode increased by 112%, from 0.4 to 0.85 W cm-2, at 700℃. Electrochemical impedance spectroscopy showed a considerable reduction in the area-specific resistance and activation energy from 133.5 to 61.5 kJ/mol, resulting in enhanced electrocatalytic activity toward ORR and overall cell performance.

희토류 원소의 분리를 위한 표면 개질 된 메조 다공성 실리케이트의 개발에 관한 연구 (Study on CMPO (Carbamoylphosphate) derivative functionalized ordered mesoporous silicates for selective removal of lanthanide)

  • 권법진;정현;김종영
    • 한국결정성장학회지
    • /
    • 제22권6호
    • /
    • pp.291-298
    • /
    • 2012
  • 자기 조립 분자 집합체 물질인 CMPO로 표면개질 된 메조 다공성 실리케이트를 가수분해와 축합반응을 이용하여 합성하였다. 손님 물질인 CMPO는 2-(diphenylphosphoryl) acetic acid와 3-(triethoxysilyl) propan-1-amine의 아마이드 결합반응을 이용하여 합성하였으며, MCM-41, SBA-15 그리고 실리카 나노입자와 같은 다양한 메조 다공성 실리케이트는 주인물질로 채택하였다. 메조 다공성 실리케이트의 비표면적은 680 $m^2/g$~1310 $m^2/g$의 넓이로 측정되었으며 BJH 방법을 이용해서 동공의 크기를 확인한 결과 2.3~9.1 nm 범위의 다양한 크기를 가지고 있었다. 메조 다공성 실리카 중에서는 SBA-15(II)가 가장 높은 약 35 wt%의 CMPO 함유량을 나타내었다. 메조 다공성 실리케이트의 표면에 개질된 CMPO 실란 작용기와 란탄족 이온과의 접근성에 관한 연구 결과, CMPO로 개질 된 모든 흡착제의 경우 상대적으로 이온 반경이 큰 La(III)보다는 크기가 작은 Nd(III)와 Eu(III) 이온을 더 선호하였다.

Fabrication and Characterization of Alumina/Silver Nanocomposites

  • Cheon, Seung-Ho;Han, In-Sub;Woo, Sang-Kuk
    • 한국세라믹학회지
    • /
    • 제44권7호
    • /
    • pp.343-348
    • /
    • 2007
  • Alumina/silver nanocomposites were fabricated using a soaking method through a sol-gel route to construct an intra-type nanostructure. The pulse electric-current sintering (PECS) technique was used to sinter the nanocomposites. Several specimens were annealed after sintering. The microstructure, mechanical properties, critical frontal process zone (FPZ) size, and thermo-mechanical properties of the nanocomposites were estimated. The relative densities of the specimens sintered at 1350 and $1450^{\circ}C$ were 95% and 99%, respectively. The maximum value of the three-point bending strength was found to be 780 MPa for the $2{\times}2{\times}10 mm$ specimen sintered at $1350^{\circ}C$. The fracture toughness of the specimen sintered at $1350^{\circ}C$ was measured to be $3.60 MPa{\cdot}m^{1/2}$ using the single-edge V-notched beam (SEVNB) technique. The fracture mode of the nanocomposites was transgranular, in contrast to the intergranular mode of monolithic alumina. The fracture morphology suggested that dislocations were generated around the silver nanoparticles dispersed within the alumina matrix. The specimens sintered at $1350^{\circ}C$ were annealed at $800^{\circ}C$ for 5 min, following which the maximum fracture strength became 810 MPa and the fracture toughness improved to $4.21 MPam^{1/2}$. The critical FPZ size was the largest for the specimen annealed at $800^{\circ}C$ for 5 min. Thermal conductivity of the alumina/silver nanocomposites sintered at $1350^{\circ}C$ was 38 W/mK at room temperature, which was higher than the value obtained with the law of mixture.

Easy and Fast Synthesis of Pd-MWCNT/TiO2 by the Sol-Gel Method and its Recyclic Photodegradation of Rhodamine B

  • Ye, Shu;Ullah, Kefayat;Zhu, Lei;Meng, Ze-Da;Sun, Qian;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제50권4호
    • /
    • pp.251-256
    • /
    • 2013
  • Multiwalled carbon nanotubes (MWCNTs) modified with Pd and $TiO_2$ composite catalysts were synthesized by the sol-gel method followed by solvothermal treatment at low temperature. The chemical composition and surface structure were characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Photocatalytic recycle degradation experiments were carried out under both UV and visible light irradiation in the presence of MWCNT/$TiO_2$ and Pd-MWCNT/$TiO_2$ composites. As expected, the nanosized Pd-MWCNT/$TiO_2$ photocatalysts had enhanced activity over the non Pd treated MWCNT/$TiO_2$ material in the degradation of a rhodamine B (Rh.B) solution. An increase in photocatalytic activity was observed and attributed to an increase in the photo-absorption effect by MWCNTs and the cooperative effect of Pd and $TiO_2$ nanoparticles. According to the recycled results, the as-prepared Pd-MWCNT/$TiO_2$ sample had a good effect on it.

Synthesis of Core@shell Structured CuFeS2@TiO2 Magnetic Nanomaterial and Its Application for Hydrogen Production by Methanol Aqueous Solution Photosplitting

  • Kang, Sora;Kwak, Byeong Sub;Park, Minkyu;Jeong, Kyung Mi;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2813-2817
    • /
    • 2014
  • A new magnetic semiconductor material was synthesized to enable separation after a liquid-type photocatalysis process. Core@shell-structured $CuFeS_2@TiO_2$ magnetic nanoparticles were prepared by a combination of solvothermal and wet-impregnation methods for photocatalysis applications. The materials obtained were characterized using X-ray diffraction, transmission electron microscopy, ultraviolet-visible, photoluminescence spectroscopy, Brunauer-Emmett-Teller surface area measurements, and cyclic voltammetry. This study confirmed that the light absorption of $CuFeS_2$ was shifted significantly to the visible wavelength compared to pure $TiO_2$. Moreover, the resulting hydrogen production from the photo-splitting methanol/water solution after 10 hours was more than 4 times on the core@shell structured $CuFeS_2@TiO_2$ nanocatalyst than on either pure $TiO_2$ or $CuFeS_2$.

이트리아 안정화 지르코니아 나노 분말 합성 (Hydrothermal Synthesis of 6mol% Yttria Stabilized Cubic ZrO2 Nano Powders)

  • 이재훈;배성환
    • 한국재료학회지
    • /
    • 제27권8호
    • /
    • pp.445-450
    • /
    • 2017
  • YSZ (Yttria-stabilized zirconia) is a ceramic material that is used for electronic and structural materials due to its excellent mechanical properties and specific electrical characteristics according to the Yttrium addition. Hydrothermal synthesis has several advantages such as fine particle size, uniform crystalline phase, fast reaction time, low process temperature and good dispersion condition. In order to synthesize YSZ nanoparticles with high crystallinity, hydrothermal synthesis was performed at various concentrations of NaOH. The hydrothermal process was held at a low temperature ($100^{\circ}C$), with a short process time (2,4,8 hours); the acidity or alkalinity of solution was controlled in a range of pH 2~12 by addition of NaOH. The optimum condition was found to be pH 12, at which high solubility levels of Y(OH) and Zr(OH) were reported. The synthesized nano powder showed high crystallinity and homogenous composition, and uniform particle size of about 10 nm.

Energy-controlled Micro Electrical Discharge Machining for an Al2O3-carbon Nanotube Composite

  • Ha, Chang-seung;Son, Eui-Jeong;Cha, Ju-Hong;Kang, Myung Chang;Lee, Ho-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2256-2261
    • /
    • 2017
  • Carbon nanotube (CNT) and alumina ($Al_2O_3$) are synthesized into hybrid composites, and an advanced electrical discharge machining (EDM) system is developed for the machining of hard and conductive materials. CNT nanoparticles are mixed with $Al_2O_3$ powder and the $Al_2O_3$/CNT slurry is sintered by spark plasma. The hardness and the electrical conductivity of the $Al_2O_3$/CNT hybrid composite were investigated. The electrical discharge is controlled by a capacitive ballast circuit. The capacitive ballast circuit is applied to the tungsten carbide and the $Al_2O_3$/CNT hybrid composite. The voltage-current waveforms and scanning electron microscope (SEM) images were measured to analyze the characteristics of the boring process. The developed EDM process can manufacture the ceramic based hybrid composites, thereby expecting the variety of applications.

분리막 및 광촉매의 혼성 정수/하수 처리 공정 (Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst)

  • 박진용
    • 멤브레인
    • /
    • 제28권3호
    • /
    • pp.143-156
    • /
    • 2018
  • 본 총설은 다양한 저널 게재 논문으로부터 분리막 및 광촉매의 혼성 정수/하수 처리 공정을 요약하였다. 이 총설에는 (1) 분리막 광촉매 반응기(membrane photoreactor, MPR), (2) 분리막 결합 광촉매 공정에서 막오염 관리, (3) 유기 오염물의 분해를 위한 광촉매 분리막 반응기, (4) 정수처리용 막분리 공정과 광촉매 분해의 결합, (5) 휴믹산 분해를 위한 광촉매 및 세라믹 막여과의 혼성공정, (6) 활성슬러지 여과를 위한 한외여과의 막오염에 이산화티타늄 나노입자의 영향, (7) 정수처리용 광촉매 및 정밀여과의 혼성시스템, (8) 선박 평형수 처리용 한외여과 및 광촉매의 혼성공정 및 (9) 분리막 및 광촉매 코팅 프로필렌 구의 혼성수처리 공정이 포함되어 있다.