• Title/Summary/Keyword: ceramic industry

Search Result 279, Processing Time 0.032 seconds

Synthesis of Low-Thermal-Expansion Cordierite Ceramics Prepared from Pyrophyllite (엽납석을 활용한 저열팽창 코디어라이트 세라믹스 합성)

  • Kim, Dong-Min;Jung, Sook-In;Lee, Hun-Chul;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.330-335
    • /
    • 2015
  • A low thermal expansion ceramic, cordierite ($2MgO{\cdot}2Al_2O_3{\cdot}5SiO_2$), was synthesized using pyrophyllite. Pyrophyllite usually consists of $SiO_2$ and $Al_2O_3$, which are the main components of cordierite. $MgCO_3$ and $Al(OH)_3$ were added in various amounts to pyrophyllite and fired for synthesis and sintering. ${\alpha}$-cordierite crystallized from $1000^{\circ}C$ with mixing of 20 wt% $MgCO_3$ and 1.7 wt% $Al(OH)_3$, and un-reacted cristobalite was also detected with the cordierite. As the temperature was increased to $1400^{\circ}C$, the cordierite yield was gradually increased. Powder compacts of the synthesized cordierite were sintered between $1250^{\circ}C{\sim}1400^{\circ}C$; the sintered samples showed a low thermal expansion coefficient of $2.1{\times}10^{-6}/^{\circ}C$ and typical sintering behavior. It is anticipated that it will be possible to synthesize cordierite ceramics on a mass production scale using the mineral pyrophyllite.

The Synthesis and Pore Property of Hydrogen Membranes Derived from Polysilazane as Inorganic Polymer (무기 고분자인 폴리실라잔을 이용한 수소 분리막의 합성 및 기공특성)

  • Kwon, Il-Min;Song, In-Hyuck;Park, Young-Jo;Lee, Jae-Wook;Yun, Hui-Suk;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.462-466
    • /
    • 2009
  • We investigated the pore properties of inorganic membranes applied for hydrogen separation industry. Inorganic membranes were derived from polysilazanes. The thermal reactions involved were studied using thermogravimetry(TG) and IR spectroscopy(FTIR) of the solids. To determine the thermal effect of pore properties, polysilazanes were pyrolysed in inert atmosphere. Pore volume and BET surface area showed the maximum value at a pyrolysis temperature of $500^{\circ}C$. For amorphous SiCN membrane derived from polysilazanes, selectivity of $H_2/N_2$ was 4.81 at $600^{\circ}C$.

A Study on Desulfurization Efficiency of Limestone Sludge with Particle Size (석회석 슬러지의 입도제어에 따른 배연탈황효율에 관한 연구)

  • Seo, Sung Kwan;Chu, Yong Sik;Shim, Kwang Bo
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.17-23
    • /
    • 2015
  • Flue gas desulfurization(FGD) is the technique to remove $SO_2$ gas from stack gases of coal-fired plants. Many researcher have studied to replace the desulfurizing agent because FGD systems use a lot of limestone and energy. In this study, we use the limestone sludge which is a by-product of steel industry in order to replace desulfurizing agent of FGD system by control the particle size of limestone sludge. And desulfurization performance test is implemented by investigating $SO_2$ gas removal properties upon the characteristic of the limestone sludge with various particle size.

Fabrication of a high performance microvalve using a multilayer piezoelectric actuator and its characteristics (적층형 압전 엑츄에이터를 이용한 고성능 마이크로 밸브의 제작과 그 특성)

  • Seo, Jung-Ho;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.390-391
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a micromachined piezoelectric valve utilizing a multilayer ceramic actuator (MCA). The micromachined MCA valve, which uses a buckling effect, consists of three separate structures: the MCA, the valve actuator die and the seat die. The valve seat die with 6 trenches was made, and the actuator die, which is driven by the MCA under optimized conditions, was also fabricated. After Si wafer direct bonding between the seat die and the actuator die, the MCA was also anodically bonded to the seat/actuator die structure. A polydimethylsiloxane (PDMS) sealing pad was fabricated to minimize the leak rate. Finally, the PDMS sealing pad was also bonded to the seat die and the stainless steel package. The MCA valve shows a flow rate of 9.13 sccm at an applied DC voltage of 100 V with a 50% duty cycle and a maximum non-linearity of 2.24% FS. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, as a medical bio-system and in the automobile industry.

  • PDF

A Case Study of Degradation Characteristics for Rod-Insulator on Catenary System in Electric Railway (전기철도 전차선로 지지애자의 염해지역 열화특성 사례 연구)

  • Jung, Hosung;Park, Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.263-266
    • /
    • 2019
  • In the Airport Railroad, the Yeongjong Bridge has a length of 4,420 m and connects Yeongjong Island with the mainland of Incheon City. The bridge is a two-level structure, consisting of a six-lane road at the upper level and a combination of a road and railroad at the lower level. The environmental conditions for the electric railway come mainly from the salt injury area and a heavy industry zone, and the maintenance cycles are determined differently depending on these conditions. This study analyzed the deterioration characteristics of long rod insulators produced with a movable ceramic bracket and polymer materials in the Yeongjong Bridge section of the Airport Railway operating in the salt injury area according to the material characteristics. Comparison of the corona measurements when the insulators were cleaned at the same time showed that the polymer insulator had a higher insulation performance than the ceramic insulator.

Characterization of Cr-P-C/MoS2 composite plating electro-deposited from trivalent chromium

  • Park, Jong-Kyu;Seo, Sun-Kyo;Byoun, Young-Min;Lee, Chi-Hwan
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.445-449
    • /
    • 2018
  • Chromium plating is a common surface treatment technique extensively applied in industry due its excellent properties which include substantial hardness, abrasion resistance, corrosion resistance, surface color, and luster. In this study, the effect of $MoS_2$ particles of the composite coating was investigated. To improve the lubrication of mold, $Cr-P-C/MoS_2$ composite plating was studied by varying the $MoS_2$ content. The current efficiency of the composite plating incorporated $MoS_2$ particles was increased at $MoS_2$ contents of 0.5 and 1.0 g/l due to the incorporation of fine particles. On the other hand, when the content of $MoS_2$ is 1.0 g/l or more, the current efficiency is lowered due to an increase in impact on the cathode surface. In order to evaluate the mechanical properties of Scratch test were conducted. Scratch test confirmed the lubricity and abrasion resistance characteristics revealed that the composite plating with added $MoS_2$ had relatively low surface roughness and uniform surface modification to improve its properties.

Thermal displacement minimization of an oxide target for bonding process by finite element analysis and optimal design (유한요소해석과 최적설계 기법을 활용한 증착용 산화물타겟 접합공정에서의 열 변형 최소화 연구)

  • Cha, Hanyoung;Chung, Chan-Yeup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.208-213
    • /
    • 2020
  • In this research, design optimization was investigated using the finite element analysis and the optimal design technique based on the PQRSM algorithm to minimize the thermal deformation of IGZO oxide in a target module in which IGZO oxide and a copper backplate are bonded to each other. In order to apply the optimal design technique in conjunction with finite element analysis, the x-coordinate of lower supports and upper fixed boards used as design valuables, and the optimal design was performed to minimize the thermal displacement of IGZO materials as the objective function. After the optimization process, the thermal displacement within IGZO oxide could be reduced to 42 % comparing with the initial model. The result is thought to be useful in the industry as it can reduce the thermal deformation of target oxides materials only by changing the position of the subsidiary materials during the bonding process.

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • Kim, Gwang-Ju;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

Review of the Research and Development of Ceramic Matrix Composite Materials and Future Works (세라믹 매트릭스 복합재료 연구 개발 동향 및 전망)

  • Lee, Tae Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.123-129
    • /
    • 2014
  • Ceramic matrix composites (CMCs) consist of such reinforcements as carbides, nitrides, borides and oxides, which have high melting points, low density, high modulus and high strength, for the purpose of increasing toughness. These materials are used for heat shielding systems for aerospace vehicles, high-temperature gas turbine combustion chambers, turbine blades, stator vane parts, etc. Oxide CMCs are used for the components of burner and flame holder and the high-temperature gas duct. CMCs are also applied to brake disks, which are subjected to severe thermal shock, and slide bearing parts under heavy loads. The research and development of the CMC are progressed for the strategic purpose in defense and energy industry; for instance, for aerospace applications in the U.S., and for hyper-speed aircraft, gas turbines, and atomic fissions in U.S., Japan, and Europe.

Additive Manufacturing for Sensor Integrated Components (센서 융합형 지능형 부품 제조를 위한 적층 제조 기술 연구)

  • Jung, Im Doo;Lee, Min Sik;Woo, Young Jin;Kim, Kyung Tae;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-by-layer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.