• 제목/요약/키워드: ceramic Powder

Search Result 1,857, Processing Time 0.032 seconds

Trend of Powder Technology for Ceramics (세라믹스 원료 분체기술의 동향)

  • Fukui, Takehisa
    • Ceramist
    • /
    • v.9 no.6
    • /
    • pp.42-48
    • /
    • 2006
  • The structural ceramic, such as $A1_2O_3,\;ZrO_2\;and\;Si_3N_4$ have applied as several parts of precision machines, automotives and instruments for semiconductor. The mechanical properties depended on purity, morphology and microstructure of the ceramic and its fabrication process. High purity and fine starting powder for the structural ceramic was prepared mainly by wet process and powder processing such as milling, mixing, drying and granulating strongly influenced on the fabrication process. Powder processing included powder synthesis technology is essential for ceramic manufacture. Also, the advanced mechanical treat[neat in powder processing to create nano composite powder was developed to improve several properties of ceramic materials. Innovation of powder processing will lead to improve mechanical and functional properties of the ceramics.

  • PDF

Adsorption and Fluidity Properties of Recycled Cement Powder (재생미분말의 흡착특성과 유동특성)

  • Lee, Jong-Kyu;Chu, Yong-Sik;Jung, Suk-Jo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.846-851
    • /
    • 2006
  • This paper discuss the adsorption and fluidity properties of recycled cement powder with different hydration hysteresis and particle size. Reactivity of hydrated fine powder was negligible low. Therefore, the adsorption and fluidity properties with super-plasticizer for hydrated recycled cement powder was very important for using additive material. Adsorption amount of super-plasticizer was increased by the finer hydrated recycled cement powder addition. And the fluidity of hydrated recycled cement powder was very poor than un-hydrated cement powder. To Improve the fluidity of hydrated recycled cement powder, PC super-plasticizer is the more effective than NS super-plasticizer.

Durability of Polymer-Modified Paste with Ceramic Powder (세라믹 분말 혼입 폴리머 시멘트 페이스트의 내구성)

  • Joo Myung Ki;Lee Youn Su;Kim Youn Hwan;Han Jung Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.799-802
    • /
    • 2005
  • The effects of binder content and ceramic powder content on the water absorption, carbonation depth and cl- penetration depth of polymer-modified pastes using redispersible polymer powders and ceramic powder are examined. As a result, the water absorption .of the polymer-modified pastes using redispersible polymer powders tend to decrease with increasing binder content and ceramic powder content. Regardless of the type of redispersible polymer powder, the carbonation depth and cl- penetration depth of the polymer-modified pastes with ceramic powder tend to decrease with increasing binder content and ceramic powder content.

  • PDF

Properties of Polymer-Modified Paste with Ceramic Powder (세라믹 분말 혼입 폴리머 시멘트 페이스트의 특성)

  • Joo Myung Ki;Lee Youn Su;Han Youn Hwan;Han Jung Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.529-532
    • /
    • 2005
  • The effects of polymer-binder ratio and ceramic powder content on the drying shringage and strength of polymer-modified pastes using redispersible polymer powders and ceramic powder are examined. As a result, the drying shrinkage of the polymer-modified pastes using redispersible polymer powders tend to decrease with increasing polymer-binder ratio and ceramic powder content. Regardless of the type of polymer powder, the tensile strength and adhesion in tension of the polymer-modified pastes with ceramic powder tend to increase with increasing polymer-binder ratio and ceramic powder content.

  • PDF

Strength and durability studies on high strength concrete using ceramic waste powder

  • Karthikeyan, B.;Dhinakaran, G.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.171-181
    • /
    • 2017
  • This paper summarizes the study on effect of ceramic waste powder as partial substitute to cement in binary blend and along with silica fume in ternary blend high strength concrete in normal and aggressive environments. Strength parameters such as compression & tension and durability indices such as corrosion measurement, deterioration, water absorption and porosity were studied. Ceramic waste powder was used in three different percentages namely 5, 10 and 15 with constant percentage of silica fume (1%) as substitutes to cement in ternary blend high strength concrete was investigated. After a detailed investigation, it was understood that concrete with 15% ceramic waste powder registered maximum performance. Increase of ceramic waste powder offered better resistance to deterioration of concrete.

Sintering Behavior of Ag-Ni Electrode Powder with Core-shell Structure

  • Kim, Kyung Ho;Koo, Jun-Mo;Ryu, Sung-Soo;Yoon, Sang Hun;Han, Yoon Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.507-512
    • /
    • 2016
  • Expensive silver powder is used to form electrodes in most IT equipment, and recently, many attempts have been made to lower manufacturing costs by developing powders with Ag-Ni or Ag-Cu core-shell structures. This study examined the sintering behavior of Ag-Ni electrode powder with a core-shell structure for silicon solar cell with high energy efficiency. The electrode powder was found to have a surface similar to pure Ag powder, and cross-sectional analysis revealed that Ag was uniformly coated on Ni powder. Each electrode was formed by sintering in the range of $500^{\circ}C$ to $800^{\circ}C$, and the specimen sintered at $600^{\circ}C$ had the lowest sheet resistance of $5.5m{\Omega}/{\Box}$, which is about two times greater than that of pure Ag. The microstructures of electrodes formed at varying sintering temperatures were examined to determine why sheet resistance showed a minimum value at $600^{\circ}C$. The electrode formed at $600^{\circ}C$ had the best Ag connectivity, and thus provided a better path for the flow of electrons.

Fabrication of Ag doped Hydroxyapatite and its Antimicrobial Effects with the Particle Size

  • Oh, Kyung-Sik;Kim, Kyung-Ja;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.192-196
    • /
    • 2001
  • Ag doped Hydroxyapatite powder in nano-scale was successfully synthesized either by co-precipitation or by ion exchange route. The fabricated powder was successfully dispersed through freeze drying due to the prevention of secondary particles. The antimicrobial effects of nano-HAp against E.coli was superior to micron ones not only in its strength but also in duration.

  • PDF