Exchange coupled hard (LTP MnBi)/soft (Fe₆₅Co₃₅) composites

Jihoon Park^{*}, Hui-Dong Qian, Ping-Zhan Si, Jong-Woo Kim and Chul-Jin Choi Powder & Ceramic Division, Korea Institute of Materials Science, Changwon, Korea

1. Introduction

Ferromagnetic low temperature phase (LTP) MnBi possesses a moderate magnetization of 8 kG [1] and the Curie temperature (T_c) of 613 K [2], and positive magnetic anisotropy coefficient [3]. However, its maximum energy product, (BH)_{max}, is about 17 MGOe at 290 K [1]. This maximum energy product is not enough for high-energy magnetic device applications. Therefore, we have proposed core (LTP MnBi hard magnet)/shell (soft magnet) structure to enhance the (BH)_{max}.

2. Experiment

We have synthesized LTP MnBi micron-powder by arc-melting technique and manual grinding, and Fe₆₅Co₃₅ nano-powder by chemical reaction. The synthesized LTP MnBi and Fe₆₅Co₃₅ powder were mixed using low energy ball milling. The volume fraction of hard magnetic phase (f_h) dependences of magnetizations and intrinsic coercivities were measured by vibrating sample magnetometer (VSM) and compared with theoretical values. The theoretical f_h dependences of magnetizations [4] and intrinsic coercivities [5] were calculated as shown in Fig. 1.

3. Discussion

The magnetizations and coercivities of synthesized powder were 7 kG and 2.8 kOe for LTP MnBi powder and 16.7 kG and 0.1 kOe for Fe₆₅Co₃₅, respectively. It was found that magnetizations and coercivities of low energy ball milled core(LTP MnBi hard magnet)/shell(soft magnet) composites follow theoretically calculated values as a function of f_h as shown in Fig. 1. This indicates that well controlled exchange coupled hard and soft composite magnets can be a breakthrough of enhancement of $(BH)_{max}$, as shown in Fig. 2, for permanent magnets without rare-earth-elements.

4. Conclusion

The MnBi/FeCo composites were fabricated by mixing separately synthesized MnBi and Fe₆₅Co₃₅ powder. The volume fraction of hard magnetic phase (f_h) dependences of magnetizations and intrinsic coercivities of the composites well follow the theoretical values, which indicates potential enhancement of (BH)_{max}, if one can successfully synthesize perfectly exchange coupled composite.

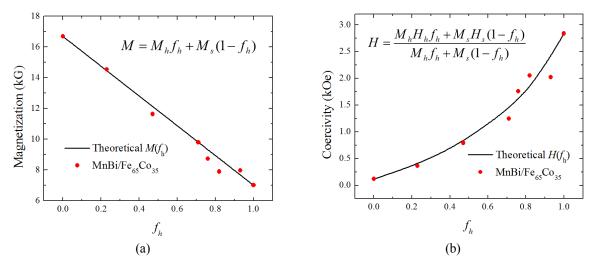


Fig. 1. Experimental and theoretical volume fraction of hard magnetic phase (f_h) dependence of (a) magnetizations and (b) coercivities.

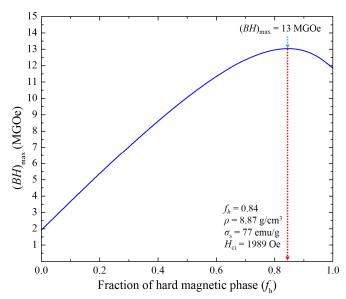


Fig. 2. Calculated maximum energy product, $(BH)_{max}$, as a function of fraction of hard magnetic phase (f_h) based on the experimental magnetizations and intrinsic coercivities in Fig. 1.

5. References

- [1] R. G. Pirich, D. J. Larson, Jr., Patent 4,784,703. 15 Nov. 1988.
- [2] B. W. Roberts, Phys. Rev. 104, 607 (1956).
- [3] X. Guo, X. Chen, Z. Altounian, and J. O. Ström-Olsen, Phys. Rev. B 46, 14578 (1992).
- [4] E. F. Kneller and R. Hawig, IEEE Trans. Mag. 27, 3588 (1991).
- [5] J. Park, Y. K. Hong, J. Lee, W. Lee, C. J. Choi, X. Xu, and A. M. Lane, J. Magn. 19, 55 (2014).