• Title/Summary/Keyword: central heating

Search Result 205, Processing Time 0.026 seconds

EFFECTS OF THE DIFFUSE IONIZING RADIATION ON THE STRUCTURE OF HII REGIONS

  • Hong, S.S.;Sung, H.I.
    • Journal of The Korean Astronomical Society
    • /
    • v.22 no.2
    • /
    • pp.127-140
    • /
    • 1989
  • Problem of the diffuse radiation (DFR) transfer is solved exactly for pure hydrogen nebulae of uniform density, and accuracies of the on-the-spot (OTS) approximation are critically examined. For different values of density and spectral types of the central star, we have calculated the degree of ionization and the kinetic temperature of electrons as functions of distance from the central star, and compared them with the corresponding results of the OTS approximation. At most locations inside an HII region. the DFR ionizes considerable amount of hydrogen; therefore, the OTS approximation under-estimates the size of ionized regions. The exact treatment of the DFR transfer results in an about 10 to 20 percent increase in the classical $Str{\ddot{o}}mgren$ radius. The OTS approximation overestimates the local heating rate by raising the density of neutral hydogens. Consequently, it predicts higher values for the local electron temperature. The OTS approximation also exaggerates the dependence of electron temperature on density. When the hydrogen density is changed from $10/cm^3$ to $10^3/cm^3$ with an 06.5V star, the OTS approximation shows an about 3,000 K difference in the electron temperature, while the exact treatment of the DFR-transfer reduces the difference to about 1,000 K. The OTS approximation fails to demonstrate the brightening of the electron temperature close to the ionization boundary.

  • PDF

Numerical Investigation about the Dominating Factors of Heat Increasing in a Gas-Dynamic igniter (가스 다이내믹 점화기의 온도상승 지배인자에 관한 수치적 연구)

  • Lee, Jaewon;Choi, Hyosang;Lim, Daehong;Seo, Seonghyeon;Kang, Sang Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.734-738
    • /
    • 2017
  • In the present study, dominant factors for temperature increase and effects of mass entering the resonance tube of the gas-dynamic igniter are investigated. Using RhoCentralFoam solver in OpenFOAM program, numerical simulation is performed for three different cases. In the results, the heating of the working fluid is found to be a result from aero-thermodynamic phenomena. Appropriate mass entering to the resonance tube is found to be an important dominant factor as well.

  • PDF

Radiative Transfer Modeling of EC 53: An Episodically Accreting Class I Young Stellar Object

  • Baek, Giseon;MacFarlane, Benjamin A.;Lee, Jeong-Eun;Stamatellos, Dimitris;Herczeg, Gregory;Johnstone, Doug;Chen, Huei-Ru Vivien;Kang, Sung-Ju
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2019
  • We present 2-dimensional continuum radiative transfer modeling for EC53. EC 53 is a Class I YSO, which was brightened at $850{\mu}m$ by a factor of 1.5. This luminosity variation was revealed by the JCMT Transient Survey. The increase in brightness is likely related to the enhanced accretion. We aim to investigate how much increase of protostellar luminosity causes the observed brightness increase at $850{\mu}m$. Thus we modeled the SED of EC 53 both in the quiescence and (small scale) outburst phases, with and without the external heating from the interstellar radiation field (ISRF). We found that the internal protostellar luminosity should increase more to fit the observed flux enhancement if the ISRF is considered in the model.

  • PDF

Synthesis and Liquid Crystalline Properties of the Compounds Consisting of a Schiff Base Type Mesogen and a Dyad Type Aromatic Ester Structure Interconnected Through the Central Hexamethylene Spacer

  • Jung-Il Jin;Hyo-Seok Kim;Jin-Wook Shin;Bong Young Chung;Byung-Wook Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.209-214
    • /
    • 1990
  • A series of compounds consisting of 4'-oxybenzylidene-4-n-butylaniline, a mesogen, and a p-substituted phenoxyterephthaloyl structure a non-mesogen, interconnected through a central hexamethylene spacer were synthesized and their thermal behavior and liquid crystallinity were studied. p-Substituents included in this study are H, Cl, CN, $NO_2,\;n-C_4H_9O$ and phenyl groups. The compounds having phenyl and $n-C_4H_9O$ substituents are enantiotropic and form smectic-A(SA) and nematic (N) phases. The compound with $NO_2$ substituent is monotropic and forms only a nematic phase on heating the solid, whereas it forms nematic as well as $S_A$ phases on cooling the isotropic liquid. The rest compounds were found to be non-liquid crystalline. This is in great contrast to the fact that the monomesogenic model compound 4'-n-hexyloxybenzylidine-4-n-butylaniline forms $S_B,\;S_C,\;S_A$ and N phases enantiotropically.

Experimental Study on the Characteristics of Ground Heat Exchange in Heating Greenhouses (난방 온실의 지중열 교환 특성에 관한 실험적 연구)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.218-223
    • /
    • 2016
  • The calculation method of ground heat exchange in greenhouses has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the soil temperature distribution and the soil heat flux in three plastic greenhouses of different size and location during the heating period. And then the calculation methods of ground heat exchange in greenhouses were reviewed. The soil temperature distributions measured in the heating greenhouse were compared with the indoor air temperature, the results showed that soil temperatures were higher than room temperature in the central part of greenhouse, and soil temperatures were lower than room temperature in the side edge of greenhouse. Therefore, it is determined that the ground heat gain in the central part of greenhouse and the perimeter heat loss in the side edge of greenhouse are occurred, there is a difference depending on the size of greenhouse. Introducing the concept of heat loss through the perimeter of building and modified to reflect the size of greenhouse, the calculation method of ground heat exchange in greenhouses is considered appropriate. It was confirmed that the floor heat loss measured by using soil heat flux sensors increased linearly in proportion to the temperature difference between indoor and outdoor. We derived the reference temperature difference which change the direction of ground heat flow and the perimeter heat loss factor from the measured heat flux results. In the heating design of domestic greenhouses, reference temperature differences are proposed to apply $12.5{\sim}15^{\circ}C$ in small greenhouses and around $10^{\circ}C$ in large greenhouses. Perimeter heat loss factors are proposed to apply $2.5{\sim}5.0W{\cdot}m^{-1}{\cdot}K^{-1}$ in small greenhouses and $7.5{\sim}10W{\cdot}m^{-1}{\cdot}K^{-1}$ in large greenhouses as design standard data.

STARBURST AND AGN CONNECTIONS AND MODELS

  • SCOVILLE NICK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.167-175
    • /
    • 2003
  • There is accumulating evidence for a strong link between nuclear starbursts and AGN. Molecular gas in the central regions of galaxies plays a critical role in fueling nuclear starburst activity and feeding central AGN. The dense molecular ISM is accreted to the nuclear regions by stellar bars and galactic interactions. Here we describe recent observational results for the OB star forming regions in M51 and the nuclear star burst in Arp 220 - both of which have approximately the same rate of star formation per unit mass of ISM. We suggest that the maximum efficiency for forming young stars is an Eddington-like limit imposed by the radiation pressure of newly formed stars acting on the interstellar dust. This limit corresponds to approximately 500 $L_{\bigodot} / M_{\bigodot}$ for optically thick regions in which the radiation has been degraded to the NIR. Interestingly, we note that some of the same considerations can be important in AGN where the source of fuel is provided by stellar evolution mass-loss or ISM accretion. Most of the stellar mass-loss occurs from evolving red giant stars and whether their mass-loss can be accreted to a central AGN or not depends on the radiative opacity of the mass-loss material. The latter depends on whether the dust survives or is sublimated (due to radiative heating). This, in turn, is determined by the AGN luminosity and the distance of the mass-loss stars from the AGN. Several AGN phenomena such as the broad emission and absorption lines may arise in this stellar mass-loss material. The same radiation pressure limit to the accretion may arise if the AGN fuel is from the ISM since the ISM dust-to-gas ratio is the same as that of stellar mass-loss.

Computational Fluid Dynamics Applied to Hypersonic Blunt Body Flows (Hypersonic 뭉뚝 물체 흐름에 적용된 CFD)

  • Baik, Doo-Sung;Han, Young-Chaol;Ha, Young-Min;Kim, Duk-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.311-316
    • /
    • 2001
  • The thin-layer Navier-Stokes equations are solved for the hypersonic flow over blunt cone configurations with applications to laminar as well as turbulent flows. The equations are expressed in the forms of flux-vector splitting and explicit algorithm. The upwind schemes of Steger-Warming and van Leer are investigated in their ability to accurately predict the heating loads along the surface of the body. A comparison with the second order extensions of these schemes is made and a hybrid scheme incorporating a combination of central differencing and flux-vector-splitting is presented. This scheme is also investigated in its ability to accurately predict heat transfer distributions.

  • PDF

Field Application of a Technique for Reducing Hydration Heat-induced Cracks in Mass Concrete (수화발열량차 공법을 이용한 매트기초 매스콘크리트 균열저감 및 현장적용)

  • Jo, Man-Ki;Kim, Jun-Ho;Heo, Young-Sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.55-57
    • /
    • 2012
  • In this study, the field applicability on reducing the heat of hydration of mass concrete by using the hydration heat difference method is analyzed with the following summary. As a result of applying the hydration heat difference method by using low heating combination, the temperature difference between the central part and the surface part of mass material was reduced, and as a result of visual observation, there was no showing of cracks by the hydration heat on the upper surface part. Therefore, the cracking index of the field to apply this method was shown to be approximately 1.57 with very little crack occurrence probability of less than 3%.

  • PDF

Navier-Stokes Computations for Hypersonic flow on Blunt Bodies (뭉뚝물체 주변에 형성된 극초음속유동에 대한 Navier-Stokes 계산)

  • Baik Doo S.;Kim Duk S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91-97
    • /
    • 2001
  • The thin-layer Navier-Stokes equations are solved for the hypersonic flow over blunt cone configurations with applications to laminar as well as turbulent flows. The equations are expressed in the forms of flux-vector splitting and explicit algorithm. The upwind schemes of Steger-Warming and van Leer are investigated in their ability to accurately predict the heating loads along the surface of the body. A comparison with the second order extensions of these schemes is made and a hybrid scheme incorporating a combination of central differencing and flux-vector-splitting is presented. This scheme is also investigated in its ability to accurately predict heat transfer distributions.

  • PDF

Effect of Temperature-increase Rate and Terminal Temperature on the Solubilization of Sewage Sludge using Microwave Irradiation

  • Park, Woon-Ji;Ahn, Johng-Hwa;Lee, Chan-Ki
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • Solubilization of sewage sludge creates favorable conditions for anaerobic microorganisms to produce biogas. In this paper, we quantify the effect of heating pretreatment on the degree of solubilization of sewage sludge. The pretreatment process was carried out using a lab-scale industrial microwave unit (2450 MHz frequency). Response surface analysis was applied to determine the combination of temperature-increase rate (ramp rate) (2.9 to 17.1 ${^{\circ}C}$/min) and terminal temperature (52 to 108${^{\circ}C}$). Both ramp rate and temperature significantly affected the solubilization degree of sludge. Within the design boundaries, the conditions predicted to maximize the solubilization degree of 15.8% were determined to be 2.9 ${^{\circ}C}$/min and 104${^{\circ}C}$.