• 제목/요약/키워드: cements

검색결과 570건 처리시간 0.032초

고형 폐기물 소각재를 이용한 alinite 시멘트의 합성 (Synthesis of Alinite Cement Using Combustion Ash of Solid Wastes)

  • 강현주;홍성수;임계규;오희갑;김정석;민경소
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.768-773
    • /
    • 2000
  • Alnite clinker, which is based on CaO-SiO2-CaCl2 system, was synthesized by recycling Cl-containing waste, and its hydraulic properties were onvestigated. Alinite coinkers with two different chemical compositions were burned for 10∼30 minutes in the range of temperature, 1350∼1450$^{\circ}C$. The microstructures of those clinkers were characterized by powder X-ray diiffracuion analysis, optical microscope, and scanning electronic microscope and heat of hydration of alinite cements which was measured in order to investigate hydraulic properties. X-ray analysis shwoed that f-CaO in both clinkers with different compositions significantly was decreased with transforming C2S(belite) to C3S(alite). From the results of microscopy and scanning electron microscopy(SEM), crystal of synthesized alite(C3S) was larger and better crystallinity than that of ordinary portland cement.

  • PDF

레진시멘트의 종류와 특성 (Type and Characteristics of Polymer-based Luting Materials)

  • 김아진;배지명
    • 대한치과의사협회지
    • /
    • 제53권3호
    • /
    • pp.178-186
    • /
    • 2015
  • Dental polymer-based luting materials are classified into esthetic resin cement, adhesive resin cement and self-adhesive resin cement. Due to the different component of each type of resin cement, the preconditioning method of tooth surface and the steps are different from each type of resin cement. The pre-treatment of adherend (ceramic, resin and metal) surface also varies with the type of resin cement and the manufacturer. In this study, the characteristics of each type of resin cement, mechanical properties, indication and advantages were investigated. Through these, clinical tips on using resin cements were suggested.

Effect of the PC, diatomite and zeolite on the performance of concrete composites

  • Kocak, Yilmaz;Savas, Muhsin
    • Computers and Concrete
    • /
    • 제17권6호
    • /
    • pp.815-829
    • /
    • 2016
  • This study has been carried out to investigate the effect of the surface properties of Portland cement, diatomite and zeolite on the performance of concrete composites. In this context, to describe the materials used in this study and determine the properties of them, chemical, physical, mineralogical, molecular, thermal, and zeta potential analysis have been applied. In the study, reference (Portland cement), 10%-20% diatomite, 10%-20% zeolite, 5+5%-10+10% diatomite and zeolite were substituted for Portland cement, a total of 7 different cements were obtained. Ultrasonic pulse velocity, capillary water absorption and compressive strength tests were performed on the hardened concrete specimens. Hardened concrete tests have been done on seven different types of concrete, for 28, 56 and 90 days. As a result of experiments it has been identified that both the zeolite and diatomite substitution has a positive effect on the performance of concrete.

Characterization of Dental Resin Cement Containing Graphene Oxide

  • Kim, Duck-Hyun;Seok, Jae-Wuk;Sung, A-Young
    • 통합자연과학논문집
    • /
    • 제12권2호
    • /
    • pp.29-34
    • /
    • 2019
  • In dental resin cement studies, viscosity is also an important factor in the adhesion of tooth defects and implants. This study used BisGMA and HPMA as the main ingredients, triethylene glycol dimethacrylate (TEGDMA) as a diluent, and benzoyl peroxide (BPO) as a photoinitiator. The physical properties of graphene oxide used as an additive for functionality were evaluated, and its use as a dental resin cement material was investigated.The rupture strength has the tendency to increase along with the increase of the ratio of graphene oxide that was added, which seemed to reflect the effect of the high strength property of graphene oxide. The flexural strength also has the tendency to increase when about 0.5% of graphene oxide was added the same as the increase of rupture strength.When graphene oxide was added, according to viscosity use, the utilization as high-quality dental resin cements will increase.

Hexagonal-Boron Nitride 강화 시멘트 복합체의 압축강도 향상에 대한 실험적 연구 (Experimental Study on Improving Compressive Strength of Hexagonal Boron Nitride Reinforced Cement Composite)

  • 최요민;신현규
    • 한국분말재료학회지
    • /
    • 제27권6호
    • /
    • pp.503-508
    • /
    • 2020
  • The mechanical properties and microstructures of hexagonal boron nitride (h-BN)-reinforced cement composites are experimentally studied for three and seven curing days. Various sizes (5, 10, and 18 ㎛) and concentrations (0.1%, 0.25%, 0.5%, and 1.0%) of h-BN are dispersed by the tip ultrasonication method in water and incorporated into the cement composite. The compressive strength of the h-BN reinforced cements increases by 40.9%, when 0.5 wt% of 18 ㎛-sized h-BN is added. However, the compressive strength decreases when the 1.0 wt% cement composite is added, owing to the aggregation of the h-BNs in the cement composite. The microstructural characterization of the h-BN-reinforced cement composite indicates that the h-BNs act as bridges connecting the cracks, resulting in improved mechanical properties for the reinforced cement composite.

Acellular dermal matrix and bone cement sandwich technique for chest wall reconstruction

  • Heo, Chan Yeong;Kang, Byungkwon;Jeong, Jae Hoon;Kim, Kwhanmien;Myung, Yujin
    • Archives of Plastic Surgery
    • /
    • 제49권1호
    • /
    • pp.25-28
    • /
    • 2022
  • The authors performed rigid reconstruction using the sandwich technique for full-thickness chest wall defects by using two layers of acellular dermal matrix and bone cement. We assessed six patients who underwent chest wall reconstruction. Reconstruction was performed by sandwiching bone cement between two layers of acellular dermal matrix. In all patients, there was no defect of the overlying soft tissue, and primary closure was performed for external wounds. The average follow-up period was 4 years (range, 2-8 years). No major complications were noted. The sandwich technique can serve as an efficient and safe option for chest wall reconstruction.

CGS를 잔골재로 활용한 콘크리트의 사전혼합시멘트 종류별 탄산화 특성 (Carbonation Depths of the Concrete Using Coal Gasification Slag Fine Aggregates Depending on Premix Type Cements)

  • 한준희;김수호;백성진;한수환;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.192-193
    • /
    • 2022
  • In this study, concrete durability was reviewed before CGS, a by-product generated from IGCC, was used as a fine aggregate for concrete. The characteristics of concrete and effect on carbonization according to the type of pre-mixed cement and the CGS substitution rate were analyzed. As a result of the analysis, the depth of carbonation according to the pre-mixed cement types increased by up to 52%, and the carbonation resistance tended to be similar overall when CGS was used as a fine aggregate.

  • PDF

프리믹스 시멘트 종류 변화 및 CGS 치환에 따른 콘크리트의 물리적 특성 (Physical Properties of Concrete According to Changing in The Types of Premix Cements and the Mixing Rate of CGS.)

  • 김수호;한수환;임군수;현승용;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.63-64
    • /
    • 2021
  • In this study, Coal gasification slag(CGS) was replaced with fine aggregate to verify the physical properties of the concrete according to the change in cement types. As a result of the study, the use of CGS resulted in a decrease of superplasticizer and an decrease of AE agent. In addition, when 50% of mixed cement and CGS were replaced, the initial strength expression was delayed, and the strength enhancing effect was judged to be weak.

  • PDF

칼슘설포알루미네이트 시멘트의 탄산화 양생과 열 안정성에 관한 검토 (Review on Carbonation Curing and Thermal Stability of Calcium Sulfoaluminate Cement)

  • 오현유;쿠날 크뤼쉬나 다스;장정국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.53-54
    • /
    • 2023
  • In recent decades, climate change has become an issue of global importance. The calcium sulfoaluminate (CSA) cement emits lower CO2 than the Portland cements while manufacturing. However, ettringite, which is a main hydration product of CSA cement, starts dehydrating at a temperature above 100℃, hence it may limit the CSA cement for high temperature application. Recently, an early carbonation curing of cement-based material has been extensively studied in terms of carbon neutralization. The carbonation curing of CSA cement has a potential to transform the AFt and AFm phases into calcium carbonate, and the transformation of unstable hydrates to stable hydrates can increase the resistance to elevated temperature. This review study summarizes and discusses the carbonation curing effect of CSA cement and the thermal stability of CSA cement exposed to elevated temperatures.

  • PDF

CSA 및 ACA계 결합재를 적용한 보수재료의 미세구조 및 역학적 성능 (Microstructures and Mechanical Properties of Repair Materials Using CSA and ACA-based Binders)

  • 이승태;정훈신;권태한;김용
    • 한국건설순환자원학회논문집
    • /
    • 제11권3호
    • /
    • pp.202-209
    • /
    • 2023
  • In this study, microstructures and mechanical properties of repair materials using calcium sulfoaluminate (CSA) and/or amorphous calcium aluminate (ACA) cements were experimentally investigated. By XRD ansysis, the hydrates formed in repair materials were identified. In addition, the microstructures of repair materials were visually examined through SEM observation. Setting time of mortars made with repair materials were measured. The strength development and ultrasonic velocity of the mortars were also evaluated at the predetermined ages. As a result, it seems that ACA showed a benefit effect with respect to mechanical properties of mortars.