• Title/Summary/Keyword: cementation

Search Result 368, Processing Time 0.023 seconds

A Study on the Separation and Recovery of Useful Metallic Elements(Zn, Pb) from the 2nd Dust in Refining of Crude-Zinc Oxide (조산화아연의 정제과정에서 발생된 2차분진으로부터 유용금속원소(Zn, Pb)의 분리회수에 관한 연구)

  • Yoon, Jae-hong;Yoon, Chi-hyun
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.66-76
    • /
    • 2021
  • Electric arc furnace dust (EAFD) contains compounds, such as oxides and chlorides, including large quantities of Zn, Pb and Fe. An efficient and stable method for the extraction of metal elements from EAFD is the Rotary Kiln Process. This method is used to recover Zn in the form of crude ZnO (approximately 60%) via the addition of a reducing agent (coke, anthracite) and limestone (for basicity control) to EAFD. This process is commonly used in industry as well as in research and development. Currently, this method is used in many Korean commercial plants, producing approximately 150,000 tons of Crude ZnO per year. The majority of Zn is found in crude ZnO (approximately 76%). In addition components such as Pb, Cd, Sn, In, Fe, Cl, and F are present as oxides, chlorides, and alkaline compounds. This elements have an adverse effect on the zinc smelting process. Therefore, a refining process that eliminates these impurities is essential. In this study, we developed a process technology that efficiently separates Zn and Pb from byproducts (mainly chlorides). A bag filter was used to collect Zn and Pb generated during the dry purification process of crude ZnO. Pure components were recovered as metals or metal carbonate.

Interpretation of Electrical Resistivity Tomogram with Contents of Clay Minerals for the Land Creeping Area (점토광물 함유량을 고려한 땅밀림 산사태 지역의 전기비저항 자료의 해석)

  • Kim, Jeong-In;Kim, Ji-Soo;Lee, Sun-Joong;Cho, Kyoung-Seo;Kim, Jong-Woo
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • Clay mineral content of weathered zone is a key parameter for landslide studies. Electrical resistivity tomography is usually performed to delineate the geometry of complex landslides and to identify the sliding surface. In clay-bearing weathered zone, parallel resistivity Archie equation is employed to investigate the effect of conductivity added (resistivity reduced) by clay minerals of kaolinite and montmorillonite, which is dependent on their specific surface area and cation exchange capacities (CEC). A decrease of overall resistivity and apparent formation factor is observed with increasing pore-water resistivity, significantly in montmorillonite. Formation factor is found decreased with increasing porosity and decreasing cementation factor. Parallel Archie equation was applied to the electrical resistivity data from the test area (Sinjindo-ri, Taean-gun, Chungcheongnam-do, Korea) which experienced land creeping in the year of 2014. A panel test with varying clay-mineral contents provides the best fit section when the theoretical section constructed with the assumed contents approaches the field section, from which the clay-mineral content of the weathered zone is estimated to be approximately 10%. Resistivity interpretation schemes including the clay mineral contents for land creeping studies explored in this paper can be challenged more when porosity, saturation, and pore-water resistivity are provided and they are included in the numerical resistivity modeling.

Review on factors affecting the optical properties of dental zirconia (치과용 지르코니아의 광학적 성질에 영향을 미치는 요소에 대한 문헌고찰)

  • Park, Chan-Ho;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.4
    • /
    • pp.177-185
    • /
    • 2021
  • Clinical applications of translucent zirconia as well as traditional zirconia (3 mol% yttria stabilized tetragonal zirconia polycrystal, 3Y-TZP) are increasing. For this reason, studies on factors affecting the optical properties of dental zirconia have been continuously reported. The optical effect of dental zirconia may vary depending on the yttria content, the thickness of the prosthesis, the sintering process, polishing, glazing and cementation in laboratory and clinical procedures. Increasing the yttria concentration can reduce the masking effect. Translucency decreases as the thickness of the restoration increases, but the required thickness may vary depending on the properties of the zirconia block. The high-speed sintering method can shorten the manufacturing time, but in some cases, the translucency of the prosthesis may decrease. In addition, the optical properties can be affected by the surface roughness of zirconia and the polishing process. The use of an appropriate colored cement can help with the masking effect of zirconia and can be useful for color matching for more esthetic results.

Effect of Shear Rate on Strength of Non-cemented and Cemented Sand in Laboratory Testing (실내시험 시 재하속도가 미고결 및 고결 모래의 강도에 미치는 영향)

  • Moon, Hong Duk;Kim, Jeong Suk;Woo, Seung-Wook;Tran, Dong-Kiem-Lam;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.23-36
    • /
    • 2021
  • In this paper, the effect of shear rate on internal friction angle and unconfined compressive strength of non-cemented and cemented sand was investigated. A dry Jumunjin sand was prepared at loose, medium, and dense conditions with a relative density of 40, 60 and 80%. Then, series of direct shear tests were conducted at shear rates of 0.32, 0.64, and 2.54 mm/min. In addition, a cemented sand with cement ratio of 8% and 12% was compacted into a cylindrical specimen with 50 mm in diameter and 100 mm in height. Unconfined compression tests on the cemented sand were performed with various shear rates such as 0.1, 0.5, 1, 5 and 10%/min. Regardless of a degree of cementation, the unconfined compressive strength of the cemented sand and the angle of internal friction of the non-cemented sand tended to increase as the shear rate increased. For the non-cemented sand, the angle of internal friction increased by 4° at maximum as the shear rate increased. The unconfined compressive strength of the cemented sand also increased as the shear rate increased. However, its increasing pattern declined after the standard shear rate (1 mm/min). A discrete element method was also used to analyze the crack initiation and its development for the cemented sand with shear rate. Numerical results of unconfined compressive strength and failure pattern were similar to the experimental results.

The effects of different metal posts, cements, and exposure parameters on cone-beam computed tomography artifacts

  • Ana Priscila Lira de Farias Freitas;Larissa Rangel Peixoto;Fernanda Clotilde Mariz Suassuna;Patricia Meira Bento;Ana Marly Araujo Maia Amorim;Karla Rovaris Silva;Renata Quirino de Almeida Barros;Andrea dos Anjos Pontual de Andrade Lima;Daniela Pita de Melo
    • Imaging Science in Dentistry
    • /
    • v.53 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • Purpose: This study assessed the intensity of artifacts produced by 2 metal posts, 2 cements, and different exposure parameters using 2 cone-beam computed tomography (CBCT) units. Materials and Methods: The sample was composed of 20 single-rooted premolars, divided into 4 groups: Ni-Cr/zinc phosphate, Ni-Cr/resin cement, Ag-Pd/zinc phosphate, and Ag-Pd/resin cement. Samples were scanned before and after post insertion and cementation using a CS9000 3D scanner with 4 exposure parameters (85/90 kV and 6.3/10 mA) and an i-CAT scanner with 120 kV and 5 mA. The presence of artifacts was assessed subjectively by 2 observers and objectively by a trained observer using ImageJ software. The Mann-Whitney, Wilcoxon, weighted kappa, and chi-square tests were used to assess data at a 95% confidence level(α<0.05). Results: In the subjective analyses, AgPd presented more hypodense and hyperdense lines than NiCr (P<0.05), and more hypodense halos were found using i-CAT (P<0.05) than using CS9000 3D. More hypodense halos, hypodense lines, and hyperdense lines were observed at 10 mA than at 6.3 mA (P<0.05). More hypodense halos were observed at 85 kV than at 90 kV (P<0.05). CS9000 3D presented more hypodense and hyperdense lines than i-CAT (P<0.05). In the objective analyses, AgPd presented higher percentages of hyperdense and hypodense artifacts than NiCr (P<0.05). Zinc phosphate cement presented higher hyperdense artifact percentages on CS9000 3D scans(P<0.05). CS9000 3D presented higher artifact percentages than i-CAT(P<0.05). Conclusion: High-atomic-number alloys, higher tube current, and lower tube voltage may increase the artifacts present in CBCT images.

Effect of Void Formation on Strength of Cemented Material (고결 지반 내에 형성된 공극이 강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.109-117
    • /
    • 2010
  • Gas hydrate dissociation can generate large amounts of gas and water in gas hydrate bearing sediments, which may eventually escape from a soil skeleton and form voids within the sediments. The loss of fine particles between coarse particles or collapse of cementation due to water flow during heavy or continuous rainfall may form large voids within soil structure. In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Glass beads with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Glass beads were mixed with 2% cement ratio and 7% water content and then compacted into a cylindrical sample with five equal layers. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle, and embedded into the middle of five equal layers. The number, direction, and length of capsules embedded into each layer vary. After two days curing, a series of unconfined compression tests is performed on the capsule-embedded cemented glass beads. Unconfined compressive strength of cemented glass beads with capsules depends on the volume, direction and length of capsules. The volume and cross section formed by voids are most important factors in strength. An unconfined compressive strength of a specimen with large voids decreases up to 35% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments in the long term after dissociation and loss of fine particles within soil structure.

Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers (단섬유를 사용한 시멘트 혼합토의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Young-Su;Choi, Sun-Gyu;Shin, Shi-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.213-220
    • /
    • 2008
  • A study on cemented sand reinforced with short fibers was carried out to improve its unconfined compressive strength and brittle behavior. Nak-dong River sand was mixed with Portland cement and polyvinyl alcohol (PVA) fibers. A PVA fiber widely used for concrete reinforcement is randomly distributed into cemented sand. Nak-dong River sand, cement and fibers with optimum water content were compacted in 5 layers and then cured for 7 days. The effect of fiber reinforcement rather than cementation was emphasized by using a small amount of cement. Weakly cemented sand with a cement/sand ratio less than 8% was fiber-reinforced with different fiber ratios and tested for unconfined compression tests. The effect of fiber ratio and cement ratio on unconfined compressive strength was investigated. Fiber-reinforced cemented sand with 2% cement ratio showed up to six times strength to non-reinforced cemented sand. Because of ductile behavior of fiber-reinforced specimens, an axial strain at peak stress of specimens with 2% cement ratio increases up to 7% as a fiber ratio increases. The effect of 1% fiber addition into 2% cemented sand on friction angle and cohesion was analyzed separately. When the fiber reinforcement is related to friction angle increase, the 8% of applied stress transferred to 1% fibers within specimens.

Does humeral fixation technique affect long-term outcomes of total shoulder arthroplasty?

  • Troy Li;Kenneth H. Levy;Akiro H. Duey;Akshar V. Patel;Christopher A. White;Carl M. Cirino;Alexis Williams;Kathryn Whitelaw;Dave Shukla;Bradford O. Parsons;Evan L. Flatow;Paul J. Cagle
    • Clinics in Shoulder and Elbow
    • /
    • v.26 no.3
    • /
    • pp.245-251
    • /
    • 2023
  • Background: For anatomic total arthroscopic repair, cementless humeral fixation has recently gained popularity. However, few studies have compared clinical, radiographic, and patient-reported outcomes between cemented and press-fit humeral fixation, and none have performed follow-up for longer than 5 years. In this study, we compared long-term postoperative outcomes in patients receiving a cemented versus press-fit humeral stem anatomic arthroscopic repair. Methods: This study retrospectively analyzed 169 shoulders that required primary anatomic total shoulder arthroplasty (aTSA). Shoulders were stratified by humeral stem fixation technique: cementation or press-fit. Data were collected pre- and postoperatively. Primary outcome measures included range of motion, patient reported outcomes, and radiographic measures. Results: One hundred thirty-eight cemented humeral stems and 31 press-fit stems were included. Significant improvements in range of motion were seen in all aTSA patients with no significant differences between final cemented and press-fit stems (forward elevation: P=0.12, external rotation: P=0.60, and internal rotation: P=0.77). Patient reported outcome metrics also exhibited sustained improvement through final follow-up. However, at final follow-up, the press-fit stem cohort had significantly better overall scores when compared to the cemented cohort (visual analog score: P=0.04, American Shoulder and Elbow Surgeon Score: P<0.01, Simple Shoulder Test score: P=0.03). Humeral radiolucency was noted in two cemented implants and one press-fit implant. No significant differences in implant survival were observed between the two cohorts (P=0.75). Conclusions: In this series, we found that irrespective of humeral fixation technique, aTSA significantly improves shoulder function. However, within this cohort, press-fit stems provided significantly better outcomes than cemented stems in terms of patient reported outcome scores. Level of evidence: III.

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF

Comparison of the retention of the full veneer casted gold crowns with varying convergence angle, crown length and dental cements (수렴각과 치관 길이를 달리한 금속 다이상에서 치과용 시멘트 합착 후 전부주조관의 유지력 비교)

  • Yun, Jung-Ho;Cho, Jin-Hyung;Kim, Jee-Hwan;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • Purpose: The aim of this research was to establish the effect and variation in differing convergence angle and length of abutment on the retention of full veneer casted gold crown. Materials and methods: Two different length,5 mm and 10 mm in height with convergence angles of 5, 10, 15 and 25 degrees crowns were fabricated. Cementation was done using cements; zinc phosphate cement (Fleck's zinc phosphate cement), resin-modified glass ionomer cement (Vitremer) and resin cement (Panavia 21). These were tested for tensile force at the point of separation by using Instron Universal Testing Machine. Statistical analysis was done by SAS 6.04 package. Results: In all cements the mean retention decreased with significant difference on increase of convergence angle (P<.05). Increase in every 5 degree-convergence angel the retention rate decreased with resin-modified glass ionomer cement of 15.9% and resin cement of 14.8%. With zinc phosphate cement, there was largest decreasing rate of mean retention of 25.5% between convergence angles from 5 degree to 10 degree. When the crown length increased from 5 mm to 10 mm, the retention increased with the significant difference in the same convergence angle and in all types of cement used (P<.05). Conclusion: The retention was strongly dependent on geometric factors of abutment. Much care is required in choosing cements for an optimal retention in abutments with different convergence angles and crown lengths.