• 제목/요약/키워드: cement production

검색결과 391건 처리시간 0.025초

Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars

  • Celikten, Serhat
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.25-34
    • /
    • 2022
  • The production of geopolymer is considered as a cleaner process due to much lower CO2 emission than that from the production of Portland cement. This paper presents a study of the potential use of recycled steel fibre (RSF) coming from the recycling process of the old tires in geopolymer mortars. Ground expanded perlite (EP) is used as a source of alumino-silicate and sodium hydroxide (NaOH=5, 10, 15, and 20M) is used as alkaline medium for geopolymer synthesis. RSFs were added to the mortar mixtures in four different volume fractions (0, 0.5, 1.0, and 1.5% of the total volume of mortar). The unit weight, ultrasound pulse velocity, flexural and compressive strength of expanded perlite based geopolymer mortar (EPGM) mixtures were determined. The microstructures of selected EPGMs were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. The optimum molarity of sodium hydroxide solution was found to be 15M for geopolymer synthesis by EP. The test results revealed that RSFs can be successfully used for fibre-reinforced geopolymer production.

고로슬래그 기반 경량 경화체의 황산 및 염산 저항 특성 (Sulfuric acid and Hydrochloric acid resistance properties of Light Weight Matrix Based on Blast furnace slag)

  • 김원종;이승호;박선규;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.137-138
    • /
    • 2015
  • The use of the cement and increased with the recent development of the construction industry. If the cement is the environmental problems caused by generating a large quantity of CO2 and the production process. Accordingly, this study is the test to determine the sulfuric acid and hydrochloric acid resistance properties of the Light weight matrix product of blast furnace slag-based light. A result, the compression strength of the sulfuric acid and hydrochloric acid immersion showed alower strength than the Plain.

  • PDF

물시멘트비에 따른 바텀애시를 사용한 콘크리트의 특성에 관한 실험적 연구 (An Experimental Study on the Properties of Concrete using Bottom Ash according to Water-Cement Ratio)

  • 이종호;김재환;김용로;강석표;최세진;김무한
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.57-60
    • /
    • 2002
  • Recently, the coal ash production has been increased by increase of consumption of electric power. So it is important to find a reclaimed place and treatment utility for treating coal ash. Accordingly, in this study we performed an experimental study to compare and analyze the Properties of concrete according to W/C and bottom ash replacement ratio. As a result of this study, it was found that the bleeding content was decreased according to decrease of W/C and increase of bottom ash replacement ratio, and the compressive strength of concrete using bottom ash was similar to plain concrete(replacement ratio 0%).

  • PDF

재생골재를 함유한 무잔골재 콘크리트의 강도특성 (Strength Characteristics of No-Fine Concrete Containing Recycled Aggregates)

  • 김태근;이광명;김낙경;고용일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.1-6
    • /
    • 1998
  • Recently, as to destruction and renovation of aged building, waste concretes have been reclaimed near foreshore and filled up underground. Recycling demolished concrete as aggregate helps to settle economic and environmental problems of obtaining superior aggregates from natural sources and to dispose waste concretes. An experimental study was carried out to investigate the strength characteristics of no-fine concrete containing recycled aggregates. The cement-aggregate weight ratios of 1: 5, 1: 6, 1: 7 and water-cement ratios of 30, 35, 40, 45% were chosen for the mix design of no-fine concretes. The compressive and splitting tensile strength at 7 and 28 days were measured for 12 different mixes. On the basis of test results, the optimum mix proportion of no-fine concrete containing recycled aggregates was determined and applied to the production of retaining wall block.

  • PDF

팽창성 혼화제를 이용한 온돌단열용 경량기콘크리트의 제조 및 생산 시스템에 관한 연구 (A Study on the Development of the Prefoamed Lightweight Cellular Concrete using Expansive Admixture for On-Dol system Floor)

  • 정성철;김범수;김기동
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.825-830
    • /
    • 1999
  • The purpose of this study is to improve overall performance of prefoamed lightweight cellular concrete for On-Dol system floor. This study includes 4 sections as follows. \circled1 Analysis of the structural characteristics of On-Dol System focusing on the lightweight cellular concrete insulation layer. \circled2 Establishment of the mixing design equations. \circled3 Development of some admixtures used with foaming agent. \circled4 Improvement of the equipment for onsite production. This study has proven that, compared with the current existing one, the newly developed lightweight cellular concrete has been reduced the usage of cement by 20% and the cracks caused by cement drying shrinkage up to 80% but has shown the increased compression strength by 20% at 7 days curing period. The volume contraction of freshly prepared cellular concrete by the loss of foam was hardly found in newly developed lightweight cellular concrete.

  • PDF

무기계 산업폐기물을 자극제로 이용한 비소성 시멘트 모르타르의 내화학성 (Chemical resistance of Non-Sintered Cement Mortar using Inorganic Industrial Wastes as activator)

  • 문경주;이철웅;박원춘;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.607-610
    • /
    • 2005
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag(GBFS), phosphogypsum(PG), and waste lime(WL) instead of clinker as its counterproposal, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by $CO_2$ discharge, and reduction of the production cost. This research investigates the chemical resistance of NSC mortar added PG and WL to GBFS as sulfate and alkali activators. The result of experiment of chemical resistance, showed that NSC is very excellent in acid resistance and seawater resistanc. Such a reasons are that the hydrate like CSH gel and ettringite formed dense pore structure of NSC matrix.

  • PDF

무기계 산업폐기물을 자극제로 이용한 비소성 시멘트 콘크리트의 염소이온 침투 저항성 (Chloride ion Permeability of Non-Sintered Cement Concrete using Inorganic Industrial Wastes as activator)

  • 문경주;이철웅;박원춘;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.453-456
    • /
    • 2006
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag(GBFS), phosphogypsum(PG), and waste lime(WL) instead of clinker as its counterproposal, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by CO2 discharge, and reduction of the production cost. This research investigates the chloride ion permeability of NSC concrete added PG and WL to GBFS as sulfate and alkali activators. The result of experiment of chloride ion permeability, showed that NSC is very excellent in seawater resistance. Such a reasons are that the hydrate like CSH gel and ettringite formed dense pore structure of NSC matrix.

  • PDF

$23,000m^3$ 대용량 바닥스래브 콘크리트의 시공기술 (Construction technology of the massive bottom slab placed by $23,000m^3$ concrete quantity)

  • 권영호;이현호;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.1035-1040
    • /
    • 2003
  • This research investigates the actual data and construction technology of the massive bottom slab placed by $23,000m^3$ concrete quantity in site of the in-ground type LNG receiving terminal having 20,000kl storage capacity. The purpose of this study is to determine the optimum mix design and control the actual concreting procedures including concrete production, transportation, placement, vibrating and curing in site. For this purpose, the optimum mix design using ternary blended cement(furnace slag cement+fly ash) and under piping method having 11 gates and 7 distributors are selected. As test results of actual construction, concrete placement is finished during 68hours with good success and obtained the good quality of the fresh and hardened concrete including slump, air contents, no-segregation, compressive strength and low hydration heat. Also, actual data for all of concrete procedures are proved successful and satisfied with our specifications.

  • PDF

Biocementation of Concrete Pavements Using Microbially Induced Calcite Precipitation

  • Jeong, Jin-Hoon;Jo, Yoon-Soo;Park, Chang-Seon;Kang, Chang-Ho;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권7호
    • /
    • pp.1331-1335
    • /
    • 2017
  • In this study, the feasibility of introducing calcite-forming bacteria into concrete pavements to improve their mechanical performance was investigated. Lysinibacillus sphaericus WJ-8, which was isolated in a previous study and is capable of exhibiting high urease activity and calcite production, was used. When analyzed via scanning electron microscopy (SEM) and X-ray diffraction, WJ-8 showed a significant amount of calcite precipitation. The compressive strength of cement mortar mixed with WJ-8 cells and nutrient medium (urea with calcium lactate) increased by 10% compared with that of the controls. Energy dispersive x-ray spectroscopy analyses confirmed that the increase in strength was due to the calcite formed by the WJ-8 cells.

나노 시멘트를 이용한 고강도 콘크리트의 특성 (Characteristics of high-performance concrete with nano size cement)

  • 조병완;박종빈;최해윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.13-16
    • /
    • 2005
  • Nanoscale materials are of great interest due to their unique optical, electrical and magnetic properties. Due to the recent amazing achievements in nano technology, new materials were developed. But these nano technology is not apply to the construction part in spite of exellent properties of nano size material. The purpose of this study is to apply to nano technology into building materials. To develop the high performance concrete, nano cement particles is prepared by mechanical method. In the results of this study, the nano silica powder increase effect according to increase of the mixing amount, appeared that compressive strength increased but is limit in increment. For the production of high-strength concrete, nano silica powder was suitable the binder ratio from 20$\%$. And, the compressive strength of concrete are especially dependent on the curing temperature.

  • PDF