• 제목/요약/키워드: cement powder

검색결과 698건 처리시간 0.029초

치과용 시멘트 용액의 증발이 경화된 시멘트의 성질에 미치는 영향 (INFLUENCE OF THE EVAPORATOIN OF LIQUIDS OF DENTAL CEMENTS ON THE PROPERTIES OF HARDENED CEMENTS)

  • 김향경;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.156-169
    • /
    • 1997
  • This study was designed to evaluate the influences of evaporation of liquid of dental cements by drying during long term using. Zinc phosphate cement, polycarboxylate cement, and glass ionomer cement were used, and evaluated the properties as follows; consistency, setting time, film thickness, solubility, and compressive strength according to the ADA specification. The specimens of control group were made by mixing the newly opened liquid using the powder-liquid ratio recommended by the manufacturer, and the specimens of ES groups were made by mixing the 10% evaporated liquid by drying with the powder-liquid ratio recommeded by the manufacturer, and the specimens of EM group were made by mixing the 10% evaporated liquid with the powder-liquid ratio modified for standard consistency. The following conclusions were drawn ; 1. The viscosity of mixture of all kinds of cements were increased by the evaporation of liquid, especially the viscosity of glass ionomer cement were influenced significantly. 2. The amount of liquid should be increased to get a standard consistency at the using of evaporated liquid of cement, the most significant increase of liquid amount was required on Ketac-Cem. 3. The setting times were increased at both cases of mixing of evaporated liquid with powder - liquid ratio recommended by manufacturer or modifided through consistency test. 4. At an experimental group of mixing of the evaporated liquid with powder-liquid ratio recommended by manufacturer, solubility was decreased and film thickness was increased. 5. By the result of evaporation of cement liquid, the compressive strength of polycarboxylate cement was increased slightly and it of glass ionomer cement was increased, however, by the increase of amount of liquid to be possible to manipulate the compressive strength were decreased.

  • PDF

폐스티로폼과 조강시멘트를 혼입한 경량기포콘크리트의 특성 (Properties of Lightweight Foamed Concrete with Waste Styrofoam and Crude Steel Cement)

  • 박채울;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.77-78
    • /
    • 2020
  • In Korea, more than 30,000 tons of waste Styrofoam are produced every year. Styrofoam is spent more than 500 years decomposing during the reclamation process, so it needs to be recycled. The recycling rate of waste styrofoam continues to be the third highest in the world, but it is lower than that of Germany and Japan. Therefore, measures are needed to increase the recycling rate of waste Styropol. Another problem is that cement is mainly used in existing lightweight foam concrete. However, large amounts of CO2 from cement-producing processes cause environmental pollution. Currently, Korea is increasing its greenhouse gas reduction targets to cope with energy depletion and climate change, and accelerating efforts to identify and implement reduction measures for each sector. In 2013 alone, about 600 million tons of carbon dioxide was generated in the cement industry. Therefore, this study replaces CO2 generation cement with furnace slag fine powder, uses crude steel cement for initial strength development of bubble concrete, and manufactures hardening materials to study its properties using waste styrofoam. As a result of the experiment, the hardening agent replaced by micro powder of furnace slag was less intense and more prone to absorption than cement using ordinary cement. Further experiments on the segmentation and strength replenishment of furnace slag are believed to contribute to the manufacture of environmentally friendly lightweight foam concrete.

  • PDF

실험계획법을 이용한 석회석 시멘트 콘크리트의 최적배합 선정 (Selection of Optimal Mixture of Limestone Cement Paste by Using the Design of Experiment)

  • 김건우;김진만;최선미;김범수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.107-108
    • /
    • 2021
  • In the global trend of countries around the world announcing the declaration of carbon neutrality, the development of low-carbon cement in the cement industry can be seen as a very important issue that can determine the future development of the cement industry in the future. Therefore, this study evaluated the strength characteristics of limestone cement paste with limestone powder of CaCO3 and refinery desulfurization waste catalyst of high Al2O3 content, and using a Minitab mixture design to optimize a limestone cement content. As a resuls it was confirmed that limestone cement paste with 5-10% of limestone powder and 1.25-2.5% of the waste catalyst exhibits similar compressive strength to that of OPC.

  • PDF

초속경 폴리머 시멘트 모르터의 내구성 (Durability of Ultrarapid-Hardening Polymer-Modified Mortar)

  • 이윤수;주명기;정인수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.153-158
    • /
    • 2001
  • The effects of polymer-cement ratio and shrinkage-reducing agent content on the durability characteristics of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content. However, the compressive strength of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content. And, water absorption and mass change of chemicals resistance of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio.

  • PDF

고유동 폴리머 시멘트 모르타르의 내구성 (Durability of High-Fluidity Polymer-Modified Mortar)

  • 윤도용;이윤수;주명기;정인수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.691-694
    • /
    • 2004
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the setting time of the polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption and chloride ion penetration depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The water absorption and chloride ion penetration improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder.

  • PDF

계란껍질 분말을 혼입한 시멘트 페이스트의 수화 특성에 관한 실험적 연구 (Experimental Study on the Hydration Characteristics of Eggshell Powder in Cement Slurry)

  • 진옥곤;순양;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.110-111
    • /
    • 2021
  • The eggshell is a type of bio-waste which is considered hazardous to the environment. In this research, the waste eggshell is utilized as a potential filler in cementitious material. This study has measured by zeta potential to analyze the interaction between the surface of the filler and the calcium ion in the solution. Meanwhile, the effect of eggshell powder on cement hydration process has been determined by isothermal calorimeter. The results show that the surface of eggshell powder have a strong adsorption of Ca2+, and addition of the eggshell powder provides a heterogeneous nucleation site for cement, which promotes the growth of hydration products.

  • PDF

방사화된 폐콘크리트의 고화재 활용을 위한 재생시멘트 분말의 물성 평가 (Evaluation of Physical Properties of Recycled Cement Powder for Recycling Radioactive Waste Concrete )

  • 최유진;김지현;정철우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.305-306
    • /
    • 2023
  • Recently, as the radioactive waste disposal facility becomes scarce, the importance of efficient disposal of waste from nuclear power plants is increasing. This study was conducted to utilize radioactive waste concrete powder as solidifying agent for radioactive waste treatment. Paste with an age of more than one year was used with a disk mill to have a particle size of 150㎛ or less, and treated at temperatures of 500℃, 600℃ and 700℃ for 2 hours. In order to simulate the radioactive cement powder, aqueous solutions of Di-water, CsCl 1M, SrCl2 1M and CoCl2 1M were used as blending water at W/C 0.7 and to improve fluidity, polycarboxylate type superplasticizer was used at 0.4 wt.% based on the weight of recycled cement paste powder. Characterisation was carried out using vicat method, strength and density.

  • PDF

결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구 (A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio)

  • 권영호;이현호;이화진;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF

산업폐기물 소각장 비산재의 시멘트 및 폐석분 고형화시 압축강도 및 용출특성 (A Study on Characteristics of Leachability and Compressive Strength of Incinerator Fly Ash, Cement and Waste Stone Powder by Solidification)

  • 정호영;김영주;김지훈
    • 대한환경공학회지
    • /
    • 제30권5호
    • /
    • pp.560-566
    • /
    • 2008
  • 본 연구에서는 산업폐기물 소각장 비산재의 고형화시 시멘트와 폐석분을 일정 비율로 첨가하여 하나의 공시체로 만든 후, 압축강도와 중금속의 용출특성을 비교 분석하여 비산재의 고형화시 고화제로 사용되는 시멘트의 일부를 대체할 수 있는지를 평가하였다. 각 시료의 입도와 SEM 분석 결과, 폐석분의 입도가 작게 나타났으며, 비산재가 시멘트나 폐석분의 혼합시 조밀성이 향상되고 뚜렷한 결정구조를 나타내는 것을 관찰할 수 있었다. 각 시료의 XRD 분석 결과, 비산재의 경우 CaO성분이 다량 함유되어 있었으며, 폐석분에 경우 SiO$_2$성분이 다량 포함되어 있어 고화제로 사용되는 시멘트와 혼합시 수화반응 및 Pozzolan반응에 기여할 것으로 판단된다. 공시체의 압축강도의 경우, 비산재에 시멘트와 폐석분 혼합 첨가시에 각 첨가비율에 따른 모든 압축강도가 10 kgf/cm$^2$을 초과하고 있었으며, 시멘트 단독으로 첨가할 때 보다 시멘트와 폐석분을 혼합하여 첨가할 때 더욱 높은 압축강도를 나타냈다. 중금속 용출시험 결과, 폐석분을 혼합 14일 양생 시, 시멘트 150 kg/m$^3$에 폐석분 80$\sim$100 kg/m$^3$을 주입하는 것으로 국내의 폐기물 관리기준 Pb 3 mg/L를 만족하는 것으로 나타났다.

시멘트계 바탕 바름재용 현무암 석분슬러지 모르타르의 경화 특성 (Hardened properties of the cement based Basalt powder sludge mortar for surface preparation)

  • 장명훈;최희복
    • 한국건축시공학회지
    • /
    • 제15권5호
    • /
    • pp.451-456
    • /
    • 2015
  • 본 연구는 시멘트계 바탕 바름재에 사용되는 바닷모래를 대체하기 위한 재료로서 현무암 가공과정에서 발생되는 현무암 석분슬러지를 재활용하기 위해 현무암 석분슬러지를 사용한 경화모르타르의 특성(연도변화, 응결경화, 흡수계수, 건조수축, 그리고 부착강도 실험)을 평가하였다. 현무암 석분슬러지를 사용한 경화모르타르는 콘크리트 바탕 바름재에 사용되는 기존의 보통모르타르의 특성과 유사하거나 좀 더 향상된 성능을 보였다. 그러나, 현무암 석분슬러지를 사용한 경화모르타르는 보통 모르타르보다 재령 8~9일 이후 건조수축이 증가되었고 부착강도는 감소되었다. 그러나 현무암 석분슬러지를 사용한 경우, KS F 4716 '시멘트계 바탕 바름재'에서 요구하는 최소 품질 규준은 만족하였다.