• 제목/요약/키워드: cement displacement

검색결과 120건 처리시간 0.025초

Optimum position for outriggers of different materials in a high- rise building

  • Nikhil Y. Mithbhakare;Popat D. Kumbhar
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.359-367
    • /
    • 2023
  • High-rise structures are considered as symbols of economic power and leadership. Developing countries like India are also emerging as centers for new high-rise buildings (HRB). As the land is expensive and scarce everywhere, construction of tall buildings becomes the best solution to resolve the problem. But, as building's height increases, its stiffness reduces making it more susceptible to vibrations due to wind and earthquake forces. Several systems are available to control vibrations or deflections; however, outrigger systems are considered to be the most effective systems in improving lateral stiffness and overall stability of HRB. In this paper, a 42-storey RCC HRB is analyzed to determine the optimum position of outriggers of different materials. The linear static analysis of the building is performed with and without the provision of virtual outriggers of reinforced cement concrete (RCC) and pre-stressed concrete (PSC) at different storey levels by response spectrum method using finite element based Extended3D Analysis of building System (ETABS) software for determining responses viz. storey displacement, base shear and storey drift for individual models. The maximum allowable limit and percentage variations in earthquake responses are verified using the guidelines of Indian seismic codes. Results indicate that the outriggers contribute in significantly reducing the storey displacement and storey drift up to 28% and 20% respectively. Also, it is observed that the PSC outriggers are found to be more efficient over RCC outriggers. The optimum location of both types of outriggers is found to be at the mid height of building.

산지별 세척사 특성 (The Properties of Sea Sand with Digging Sources)

  • 김정빈
    • 한국건설순환자원학회논문집
    • /
    • 제2권2호
    • /
    • pp.76-82
    • /
    • 2006
  • High-strength, High-durability concrete appearance was embossed by benevolence who quality for each raw material that become factor that is direct in concrete manufacture and the special quality is very important and request properties of matter were also strengthened more. Specially, natural resources of good quality were abundant past in occasion of aggregate and unlike concrete request strength past that the importance was less relatively the quality enemy than cement because is also not big, importance of aggregate quality great veried as concrete strength and request properties of matter about durability are strengthened more on extreme displacement. Mixing four who is original and mixs special quality examination of domestic three Four-Stick Games by Chaechwiwon and age Four-Stick Games and crushed sand examined concrete quality characteristic that use mortar and concrete quality characteristic, special quality of North Korea sun guardian mountain three Four-Stick Games that is imported from the North Korea, North Korea sun guardian mountain three Four-Stick Games etc..

  • PDF

Aluminum 합금재 Frame을 이용한 벽체거푸집공법의 성능평가에 관한 연구 (A Study on the Performance Evaluation of Form Using the Aluminum Alloy Frame Reinforced Panel)

  • 안재철;오상균;강병희
    • 한국건축시공학회지
    • /
    • 제1권1호
    • /
    • pp.135-142
    • /
    • 2001
  • This study is for the investigation of form using the aluminum-compound metal frame(Aluminum frame reinforced panel : AFR panel) which is improved in the capacity in the wall-concrete structure in steal of using the existing form which has problems such as, excessive exposure of cement, the loss of labor when it is constructed or disjointed, and it's economical efficiency compared with that of EURO Form. AFR panel passes the KS F 8006 test, and as a result of field test, it's displacement is satisfied with Specification. And using AFR panel is more economical than that of EURO Form because saving labor cost which plays a major part in cost saving in formwork is more effective in retrenching total cost than increment of material cost.

  • PDF

Seismic repair of exterior R/C beam-to-column joints using two-sided and three-sided jackets

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.17-34
    • /
    • 2002
  • The use of local two-sided and three-sided jacketing for the repair and strengthening of reinforced concrete beam-column joints damaged by severe earthquakes is investigated experimentally and analytically. Two exterior beam-column joint specimens ($O_1$ and $O_2$) were submitted to a series of cyclic lateral loads to simulate severe earthquake damage. The specimens were typical of existing older structures built in the 1960s and 1970s. The specimens were then repaired and strengthened by local two-sided or three-sided jacketing according to UNIDO Manual guidelines. The strengthened specimens ($RO_1$ and $RO_2$) were then subjected to the same displacement history as that imposed on the original specimens. The repaired and strengthened specimens exhibited significantly higher strength, stiffness and better energy dissipation capacity than the original specimens.

저유동성 몰탈형 주입재에 의한 건물기초보강 (Reinforcement of Building Foundation by the Low Slump Mortar Grout)

  • 천병식;고용일;권형석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.71-76
    • /
    • 2000
  • In generally, grouting consists of injecting a suspension or solution into the voids of soils. The low slump mortar grout has been used in America since 1950's. The Compaction Grouting, the injection of a very stiff under relatively high pressure, form a cylinderical grout support pile. The grout generally does not enter soil pores but remains in homogeneous mass that gives controlled displacement either to compact loose soils, or for lifting of structures, or both. In this paper, on the case of the reinforcement construction of 00 plant that the foundation's bearing capacity is insufficient and is to reinforce the foundation, a study has been peformed to analyze the effectiveness of the ground improvement. The bearing capacity of the Compaction Pile has been verified by the S.P.T and the settlement of the improved ground has been monitored rising the magnetic extensometer.

  • PDF

Modeling of fiber pullout behaviors of stiff fiber reinforced cementitious composites

  • Chang, Xu;Chen, Ya-Juan;Lin, Hai-Xiao;Zhang, Yong-Bin
    • Computers and Concrete
    • /
    • 제9권3호
    • /
    • pp.171-178
    • /
    • 2012
  • This paper presents numerical studies of stiff fiber pullout behaviors of fiber reinforced cementitious composites based on a progressive damage model. The ongoing debonding process is simulated. Interfacial stress distribution for different load levels is analyzed. A parametric study, including bond strength and the homogeneity index on the pullout behaviors is carried out. The numerical results indicate that the bond stress decreases gradually from loaded end to embedded end along fiber-cement interface. The debonding initially starts from loaded end and propagates to embedded end as load increasing. The embedded length and bond strength affect the load-loaded end displacement curves significantly. The numerical results have a general agreement with the experimental investigation.

시멘트모르터 충진형 포장궤도의 실물 반복재하특성에 관한 연구 (Study on the Full-Scale Cyclic Loading Characteristics for Cement Mortar Pouring type Paved Track)

  • 이일화;장승엽;김은
    • 한국철도학회논문집
    • /
    • 제9권3호
    • /
    • pp.305-312
    • /
    • 2006
  • Gravel ballasted tracks are used as a basic structure for the domestic railway tracks. However, such kind of tracks has few disadvantages with service life of the structure, such as rapid deterioration of the tracks. Due to this reason, there is a need to develop low maintenance track to improve the service life of the conventional line tracks. CMP paved tacks are one of the kind of concrete tracks those were manufactured by using the prepacked concrete techniques. The purpose to develop paved tracks is to reduce the maintenance cost. The most important controlling factors to design the paved tracks are surrounding environmental condition and repeated train loading. In this study, in order to investigate the deformation characteristics such as displacement, earth pressure, strain ratio, and crack along the repeated loading cycle, cyclic loading test through real scale model was carried out.

Aggregate Gradation Effects on Cracking-Related Displacements in Concrete Pavement

  • 정지훈;김낙석
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.631-635
    • /
    • 2005
  • Aggregate gradation effects on cracking-related displacements of concrete are investigated in the laboratory using the German cracking frame. Concrete workability was assessed by use of the slump and drop tests for two different concrete mixtures consisting of gap-graded and dense-graded aggregates. Shrinkage strain, cracking frame strain, and concrete strain were measured and used to compare to strength gain and creep development. The measured and calculated strains of the different aggregate gradations were compared each other. Gradation effects on strength and stress development relative to tensile cracking at saw-cut tip were also investigated. Test results revealed that the gap-graded concrete has indicated larger shrinkage and creep strains than dense-grade concrete perhaps because of its higher volume concrete of cement mortars in the mixture.

Curing effect on mortar properties produced with styrene-butadiene rubber

  • Cemalgil, Selim;Etli, Serkan;Onat, Onur
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.705-715
    • /
    • 2018
  • This paper presents an experimentally investigation pertinent to the mechanical properties of rubberized mortar (RM) with styrene-butadiene rubber (SBR). The SBR were used with constant water-to-cement ratio of 0.485 and two different volume proportion of SBR particles were utilized as aggregates. One types of SBR particles with fineness modulus of 4.951 were utilized 0%, 10%, and 20% of aggregate volume. Effectiveness of SBR replacement ratio, curing and aging effect on the compressive strength, flexural strengths as well as load-displacement. Compressive and flexural strength of concrete were investigated at the end of 28-days and 56-days age. Obtained results demonstrated that utilization of SBR reduced the flexural strength of SBR mortar at the earlier curing age while SBR increased. Moreover, mechanical properties of mortar mentioned above were significantly affected by the water cure timing with an increasing proportion of the replacement level of SBR.

내측연결형 임플란트에 체결한 지대주의 수직침하에 대하여 반복하중이 미치는 영향 (Effect of cyclic loading on axial displacement of abutment into implant with internal tapered connection: a pilot study)

  • 설현우;허성주;곽재영;김성균;한종현
    • 대한치과보철학회지
    • /
    • 제51권4호
    • /
    • pp.315-322
    • /
    • 2013
  • 연구 목적: 내측연결형 임플란트와 지대주의 연결체에 반복하중을 부여하였을 때 수직 침하를 평가하고자 하였다. 연구 재료 및 방법: 외측연결형 임플란트와 내측연결형 임플란트에 세 종류의 시멘트유지형 지대주를 각각 장착하였다. 즉, 외측연결형 지대주(Ext 그룹), 내측연결형 1-piece 지대주(Int-1 그룹), 내측연결형 2-piece 지대주(Int-2 그룹)를 사용하였으며, 각 그룹마다 7개의 시편을 준비하였다. 임플란트-지대주 연결체에 수직하중을 적용하기 위하여 임플란트 받침대에 고정한 후, 4 Hz의 빈도로 $150{\pm}10N$의 반복하중을 가하였다. 수직침하량은 0, 5, 10, 50, 100, 1,000, 5,000, 10,000회의 반복하중 후에 각각 측정하였다. 반복측정분산분석(RM-ANOVA)를 이용하여 반복하중의 영향을 분석하였으며, 패턴변화를 관찰하기 위하여 선형혼합모형(linear mixed model)을 사용하였다. 유의수준은5% 로 설정하였다. 결과: 10,000회 반복하중 후 수직침하량은, Ext 그룹에서 $0.714{\pm}0.488{\mu}m$, Int-1그룹에서 $5.286{\pm}1.604{\mu}m$, Int-2 그룹에서 $11.429{\pm}1.902{\mu}m$를 나타내었다. 패턴분석에서는, Int-1 그룹 및 Int-2 그룹에서 지속적인 수직침하가 관찰되었으며, Ext그룹에서는 수직침하현상이 관찰되지 않았다. 결론:10,000회 반복하중 후의 선형혼합모형을 통한 분석에서, Ext그룹은 수직침하현상을 보이지 않았으나, Int-1 및 Int-2 그룹은 지속적인 수직침하현상을 나타내었다. 또한, Int-2그룹에서 Int-1그룹보다 더 많은 수직침하량이 관찰되었다.