• 제목/요약/키워드: cement, pore

검색결과 298건 처리시간 0.023초

STRENGTH CHANGES OF SURROUNDING CLAY DUE TO SOIL-CEMENT COLUMN INSTALLATION

  • Miura, Norihiko
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.19-36
    • /
    • 1997
  • This paper discusses the reduction and subsequent recovery and increase of shear strength of clay in the vicinity of soil-cement column. Laboratory and field tests were conducted to investigate the effects on surrounding clay during and after soil-cement column installation in soft Ariake clay. Discussions were made on the mechanism of strength changes of clay by considering the thixotropic recovery, reconsolidation effect, penetration of cement slurry and diffusion of exchangeable cations. On the basis of field and laboratory observations, 10 days after column installation, the decreased shear strength of surrounding clay during mixing was recovered and 30 days later, shear strength of surrounding clay increased 30% by average. Therefore, it is recommended that the increase of shear strength of clay can be taken into consideration in the bearing capacity and stability analysis of the composite ground.

  • PDF

초기재령에 있어 시멘트 수화에 따른 염화물 고정화 효과 (Effects of Chloride Binding on the Cement Hydration at early ages)

  • 문소현;소승영;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.437-442
    • /
    • 1999
  • Corrosion of steel reinforcment is the most significant factor of deterioration in reinforced concrete structures. Chloride ion is considered one of the most common culprits on the corrosion of steels in concrete. This study is effect of cement hydraulic degree on the chloride binding in hardened cement pastes. With increasing the cement hydration, cement products such as CSH and Ca(OH)2 were increased, and the part of added chloride were binded with them. With respect to A type, in first, the additional contents of chloride of 27.08mM/L in pore solution were reduced as 4.3mM/L at 3 days, 4.0mM/L at 7 days, 3.6mM/L at 28 days.

  • PDF

포틀랜드 시멘트 모르타르의 미세구조와 동결융해저항성에 대하여 (Microstructure and Freeze-Thaw Resistance of Portland Cement Mortars)

  • 이종호;장복기
    • 한국세라믹학회지
    • /
    • 제28권11호
    • /
    • pp.917-925
    • /
    • 1991
  • For the present experiment five Portland cement mortars are in order: mortars with two different water/ cement ratios (W/C=0.45 and 0.50, each having no chemical additive), and those with an additive such as superplasticizer, air-entraining agent or water-repelling agent. We fix the W/C ratio of mortars having additive so that their pastes can yield the same workability as that of the cement mortar of W/C=0.50 with no additive. It is shown that the freeze-thaw resistivity depends heavily on the characteristic of wide pores. Despite a good deal of wide pores, the air-entrained specimen shows a good freeze-thaw resistivity due to appropriate air-pores. And also the specimen with water-repelling agent, which proves to cause the microstructure to become hydrophobic, make good resistance to freeze-thaw cycles in spite of its high wide-porosity. Our suggestion is that the freeze-thaw durability of Portland cement mortar/concrete can be more effectively enhanced by using air-entraining agent or water-repelling agent, and simutaneously by taking proper measures against foaming and/or the increased tendency of wide-pore building due to additive.

  • PDF

제조 조건에 따른 MiDF 시멘트 복합체의 물리적 특성 (Physical Properties of MiDF Cement Composites According to Manufacturing Conditions)

  • 박준형;라정민;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.138-139
    • /
    • 2021
  • The MiDF Cement Composite is a high-performance construction material with low defects that dehydrates surplus water through pressurization and minimizes air gap between particles. In other words, the performance expression of the MiDF cement complex is affected by pressurized conditions. Thus, this study analyzed the physical characteristics of MiDF cement complex according to the power and pressure of the ga-power and the time of application and intends to use it as a basic data for optimal mixing.

  • PDF

질소흡착법을 사용한 고온 가열 시멘트의 세공구조 측정 (Measurement of the construction structure of hot-heated cement using nitrogen adsorption method)

  • 김민혁;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.140-141
    • /
    • 2020
  • Concrete has a lower thermal conductivity or thermal diffusion coefficient compared to other building materials, so it is widely used as fireproof compartment material or refractory material for structures. However, in the event of thermal damage such as fire, cement curing agents and aggregates act differently, resulting in heat generation or deterioration of tissue due to dehydration, resulting in deterioration of physical properties and fire resistance. Therefore, in this study, the processing structure of cement paste is measured through nitrogen absorption method. The test specimen is a cement paste of 40% W/C and is set at 1000 ℃ under heating temperature conditions. As the temperature rose, the micro-pore mass below was reduced based on about 0.01 감소m, but the air gap above that was increased.Thus, in the range of pores measured in nitrogen adsorption, the air mass tended to decrease under high temperature conditions.

  • PDF

그래핀 나노리본 혼입 시멘트 경화체의 고온 노출에 의한 기계강도 변화에 관한 연구 (A study on the mechanical strength change of graphene nanoribbons enhanced cement paste at a high-temperature)

  • 리패기;유준성;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.125-126
    • /
    • 2023
  • This work explores the effectiveness of graphene nanoribbons (GNRs) in modifying the fire resistance of cement paste. The GNRs are added to the ordinary Portland cement at 0.10 wt% of the cement, and the sample is heated to target temperatures after curing for 28 days. Subsequently, the variations of compressive strength and pore structure are inquired by compared to the control sample without nano reinforcing and the sample with the same amount of carbon nanotubes (CNTs).

  • PDF

Effects of Cement Alkalinity on the Time-to-Corrosion of Reinforcing Steel in Concrete under Chloride Exposure

  • Nam, Jingak;Hartt, William H.;Kim, Kijoon
    • Corrosion Science and Technology
    • /
    • 제3권6호
    • /
    • pp.245-250
    • /
    • 2004
  • A series of classical G109 type concrete specimens was exposed to cyclic wet and dry ponding with 15 w/o NaCl solution for approximately five years. Mix design variables included 1) three cement alkalinities (EqA of 0.97, 0.52, and 0.36) and 2) three water-cement ratios (0.50, 0.41, and 0.37). To determine the corrosion initiation time, corrosion potential and macro-cell current between top and bottom bars were monitored. Subsequent to corrosion initiation, specimens were autopsied and visually inspected. Concrete powder samples were collected from top rebar trace and chloride concentration was measured. Also, time-to-corrosion, $T_i$, for specimens of the individual mix designs was represented using Weibull analysis. Time-to-corrosion was a distributed parameter; and because of this, corrosion initiation of four identical specimens for each mix varied, often over a relatively wide range. Specimens fabricated using the lowest water cement ratio and the highest alkalinity cement exhibited the longest time-to-corrosion initiation and the highest chloride threshold levels. Time-to-corrosion did not increase monotonically with cement alkalinity, however, presumably as a consequence of relatively high $Cl^-$ binding in the lower pore water pH range. The chloride threshold level, $Cl_{th}$, increased with increasing $T_i$ and, consequently, was greatest for the highest cement alkalinity specimens.

폴리카복실레이트계 고유동화제의 분자구조가 시멘트 모르타르의 물성에 미치는 영향 (Effects on the Properties of Cement Mortar with Various Molecular Structures of Polycarboxylate-Type Superplasticizers)

  • Song, Jong-Taek;Ryu, Ho-Seok
    • 한국세라믹학회지
    • /
    • 제41권4호
    • /
    • pp.302-312
    • /
    • 2004
  • 메톡시폴리에틸렌글리콜모노메타크릴레이트(MPEGMAA)와 메타크릴산(MAA)의 몰비와 MPEGMAA의 폴리에틸렌옥사이드(PEO)의 길이를 변화시켜 합성한 폴리카복실레이트계 고유동화제(PCA)를 시멘트 모르타르에 첨가한 경우. 그 물성에 미치는 영향에 대하여 조사하였다. PEO의 길이가 긴 경우 [MPEGMAA]/[MAA] 몰비가 낮을수록 모르타르의 유동성은 향상되었다. PCA를 첨가했을 때 응결시간은 지연되며, PEO의 길이가 짧고 [MPEGMAA]/[MAA] 몰비가 낮을수록 응결은 더 지연되었다. 특히 MPEGMAA의 분자량이 475인 경우(에틸렌옥사이드 반복단위는 10이다) 응결시간의 지연이 가장 컸다. PCA 분자내 존재하는 PEO의 영향으로 표면장력은 크게 낮아지며, 몰탈의 기공크기분포를 크게 변화시쳤다. PCA에 의해 생성되는 기공은 대부분 7∼370$\mu\textrm{m}$ 범위의 거대 기공이며, 이 기공들에 의해 몰탈의 밀도와 압축강도가 낮아지게 되었다.

혼합형 저발열 시멘트를 사용한 콘크리트의 초유동성 및 내해수성에 관한 연구 (A Study on the Resistance to Sea Water and High Flowing Properties of Concrete Using Blended Low Heat Cement)

  • 송용순;노재호;강석화
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.281-289
    • /
    • 1998
  • 본 연구는 해양 매스 콘크리트 구조물인 서해대교 사장교 주탑기초(L${\times}$D${\times}$H : 66${\times}$28${\times}$32~38.2)에 콘크리트 타설시 다짐작업을 생략할 수 있고, 수화열에 의한 온도균열 발생을 제어할 수 있는 콘크리트의 사용에 대하여 적극적으로 검토한 것으로서 혼합형 저발열 시멘트를 사용한 초유동 콘크리트와 현장에서 사용중인 5종 시멘트를 사용한 25-240-15 보통 콘크리트를 주탑 기초 일부분에 적용하여 유동성, 강도발현 성능, 재료분리 저항성, 수화열, 내해수성 등을 비교 평가한 것이다. 그 결과, 저발열시멘트를 사용한 초유동 콘크리트는 별도의 다짐 작업없이도 우수한 작업성과 자기 충전성, 재료분리 저항성을 나타냈으며, 5종시멘트를 사용한 25-240-15보통 콘크리트보다 단위시멘트량이 54kg/$m^2$ 정도 증가했음에도 불구하고 오히려 수화열은 $10^{\circ}C$이상 저감되어 온도균열 제어에 매우 효과적임을 확인할 수 잇었다. 또한 부재에서 채취한 코아의 압축강도는 5종시멘트를 사용한 25-240-15 보통 콘크리트와 동등한 강도 발현율을 나타내었다. 특히 해수중 염소이온의 침투에 대한 저항성을 평가하기 위해 실시한 촉진 염소이온침투 시험결과 통과전하량이 5종 보통 콘크리트보다 5배정도 낮게 나타났으며, 기타 화학물질에 대한 저항성은 비슷한 경향을 보였다. 따라서 저발열 시멘트를 사용한 초유동 콘크리트는 유동성개선에 의한 다짐 작업의 생략 효과와 더불어 수화열 저감 효과에 따른 온도균열제어 및 공기단축 등으로 주탑기초의 콘크리트에 매우 유리한 시멘트라고 판단되었다.

Cementing failure of the casing-cement-rock interfaces during hydraulic fracturing

  • Zhu, Hai Y.;Deng, Jin G.;Zhao, Jun;Zhao, Hu;Liu, Hai L.;Wang, Teng
    • Computers and Concrete
    • /
    • 제14권1호
    • /
    • pp.91-107
    • /
    • 2014
  • Using the principle of damage mechanics, zero-thickness pore pressure cohesive elements (PPCE) are used to simulate the casing-cement interface (CCI) and cement-rock interface (CRI). The traction-separation law describes the emergence and propagation of the PPCE. Mohr-coulomb criteria determines the elastic and plastic condition of cement sheath and rock. The finite element model (FEM) of delamination fractures emergence and propagation along the casing-cement-rock (CCR) interfaces during hydraulic fracturing is established, and the emergence and propagation of fractures along the wellbore axial and circumferential direction are simulated. Regadless of the perforation angle (the angle between the perforation and the max. horizontal principle stress), mirco-annulus will be produced alonge the wellbore circumferential direction when the cementation strength of the CCI and the CRI is less than the rock tensile strength; the delamination fractures are hard to propagate along the horizontal wellbore axial direction; emergence and propagation of delamination fractures are most likely produced on the shallow formation when the in-situ stresses are lower; the failure mode of cement sheath in the deep well is mainly interfaces seperation and body damange caused by cement expansion and contraction, or pressure testing and well shut-in operations.