• 제목/요약/키워드: cellulose-producing bacteria

검색결과 34건 처리시간 0.034초

Cellulose 생합성 세균의 분리 및 특성 (Characterization and Isolation of Bacteria Producing Cellulose)

  • 이승진;유주순;정수열;최용락
    • Applied Biological Chemistry
    • /
    • 제40권2호
    • /
    • pp.101-106
    • /
    • 1997
  • 발효시켜서 만드는 감식초에서 시료를 채취하여 배양하고, pellicle을 형성하는 single colony를 cellulose 생합성균으로 분리하였다. 분리된 균주는 형태적 특성, 알콜의 재산화 등의 생리, 생화학적 특성 등에 의하여 Acetobacter속으로 분류되었으며, Acetobacter CBI-2라고 명명하였다. Acetobacter CBI-2는 정치배양 시에 기존의 생합성 균주로 알려진 Acetobacter xylinum과 대등한 cellulose 생합성 능력을 나타내었다. Acetobacter CBI-2이 생성한 고분자물질의 분해산물을 TLC법으로 확인한 결과 기존 cellulose의 것과 일치하였다. Acetobacter CBI-2에서 genomic DNA를 분리 정제하여 cel A 영역을 probe로하여 hybridization 시킨 결과, 상동성을 나타내어 분리 균주에는 cellulose 생합성 관련 유전자가 존재함을 나타내었다.

  • PDF

Cellulose 생성 Acetobacter xylinum KI 균주의 분리 및 특성 (Isolation and characterization of Cellulose Producing Acetobacer xylinum KI Strain)

  • 차영주;박경진;김도경;전홍성;이병권;김근형;이숙영;김성준
    • 한국미생물·생명공학회지
    • /
    • 제22권6호
    • /
    • pp.571-576
    • /
    • 1994
  • One strain of cellulose-producing Acetobacter was isolated from the traditionally fermen- ted grape vinegar in Korea. The isolated strain, designated as KI strain was identified as the Acetobacter xylinum with respect to physiological and biochemical characteristics. KI produced acetic acid from ethanol, and then decomposed acetate to CO$_{2}$ and H$_{2}$O. When the isolated strain was cultivated statically in broth culture, a thick cellulose pellicle was formed. KI was tolerance of 8% ethanol and 30% glucose, and the isolate was positive in ketogenesis from glycerol, $\gamma$-pyrone from glucose and fructose, and 2-ketogluconic acid from glucose. KI strain possessed straight-chain C$_{18:1}$, C$_{16:0}$, and C$_{14:0}$ fatty acid, and contained ubiquinone Q$_{9}$ and Q$_{10}$ as isoprenoid quinone. DNA base composition of KI strain was 57.6% G+C.

  • PDF

Microbial Cellulose 생산세균의 분리 및 동정 (Isolation and Identification of Cellulose-Producing Bacteria)

  • 손홍주;이오미;김용균;이상준
    • 한국미생물·생명공학회지
    • /
    • 제28권3호
    • /
    • pp.134-138
    • /
    • 2000
  • 자연계에 다양하게 존재하는 세균중 셀룰로오스 생산성이 우수한 균주를 분리 및 동정함으로서 새로운 생물자원을 확복하고자 하였다 사과, 포도, 식초 등의 시료로부터 총 57주의 셀룰로오스 생산균주를 분리하였다. 그중 사과에서 분리된 A9 균주를 공시균으로 선정하여 형태학적 배양적 및 생리생화학적 특성을 검토한 결과 Acetobacter 속으로 동정되어 편의상 Acetobacter sp. A9로 명명하였다 본 균주는 ethanol을 acetic acid로 산화시킨 후 다시 $CO_2$$H_2O$. 로 재산화시키는 특성을 가지고 있었다 또한 glycerol로부터 dihydroxyacetone을 생성할 수 있었으나 glucose 및 fructose로부터 ${\gamma}$-pyrone은 생성할 수 없었다. 본균주를 HS액체배지에서 정치배양했을 때 두꺼운 셀룰로오스 pellicle을 합성하였으며 교반배양에서 mass 형태의 셀룰로우스를 합성할 수 있었다.

  • PDF

Electricity Generation in Cellulose-Fed Microbial Fuel Cell Using Thermophilic Bacterium, Bacillus sp. WK21

  • Kaoplod, Watcharasorn;Chaijak, Pimprapa
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.122-125
    • /
    • 2022
  • The cellulose-fed microbial fuel cell (MFC) is a biotechnological process that directly converts lignocellulosic materials to electricity without combustion. In this study, the cellulose-fed, MFC-integrated thermophilic bacterium, Bacillus sp. WK21, with endoglucanase and exoglucanase activities of 1.25 ± 0.08 U/ml and 0.95 ± 0.02 U/ml, respectively, was used to generate electricity at high temperatures. Maximal current densities of 485, 420, and 472 mA/m2 were achieved when carboxymethyl cellulose, avicel cellulose, and cellulose powder, respectively, were used as substrates. Their respective maximal power was 94.09, 70.56, and 89.30 mW/m3. This study demonstrates the value of the novel use of a cellulase-producing thermophilic bacterium as a biocatalyst for electricity generation in a cellulose-fed MFC.

감식초로부터 분리한 Acetobacter xylinum에 의한 미생물 섬유소 생산

  • 고명석;윤영미;한지혜;이은미;정봉우;이현철
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.350-351
    • /
    • 2000
  • We isolated cellulose-producing bacteria from persimmon vinegar(Korea traditional fermentation food). Some of these strains were selected for cellulose production in agitation culture. On the other hand, it was also found that strains suitable for static culture production were not necessarily suitable for agitation culture. Therefore we estimated the cellulose production of these isolates in static culture. To determine nutritional requirement for the production of bacterial cellulose, several nutrients as carbon source, nitrogen and mineral salt were tested.

  • PDF

Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge

  • Nahm, Chang Hyun;Lee, Seonki;Lee, Sang Hyun;Lee, Kibaek;Lee, Jaewoo;Kwon, Hyeokpil;Choo, Kwang-Ho;Lee, Jung-Kee;Jang, Jae Young;Lee, Chung-Hak;Park, Pyung-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.573-583
    • /
    • 2017
  • Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic (i.e., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads (i.e., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

농산폐자원의 이용에 관한 연구(제이보) 섬유소자화세균의 분리 및 동정 (Studies on the Utilization of Agricultural Wastes (Part 2) Isolation and Identification of Cellulose Utilizing Bacteria.)

  • 배무;김병홍
    • 한국미생물·생명공학회지
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 1974
  • 농산페자원을 기질로 하여 섬유소단세포단백을 생산하기 위해 전국에서 수집한 썩은 나무, 퇴비, 토양 등 시료에서 enrichment culture technique으로 172주의 섬유소자화세균을 분리하였다. 이들중 섬유소 자화력이 강한 균 6주를 동정하여 다음 결과를 얻었다. 1. 선별한 6주 중 5주는 Cellulomonas속이었으며 나머지 1주는 Sporocytophaga속이었다. 2. Sporocytophaga속의 세균은 microcyst가 타원형인 S. ellepsospora이었다. 3. Cellulomonas속의 세균들은 C.fimi 1균주, C.gelida 1균주, C. flavigena 2균주 및 C. aurogena 1 균주이 었다. 4. 분리균 C. aurogena는 5탄당인 arabinose 와 xylose를 자화하는 성질이 Bergey's Manual에 수록된 균과 달라 새로운 변종으로 판명되었다.

  • PDF

Evaluation, Characterization and Molecular Analysis of Cellulolytic Bacteria from Soil in Peshawar, Pakistan

  • Ikram, Hira;Khan, Hamid Ali;Ali, Hina;Liu, Yanhui;Kiran, Jawairia;Ullah, Amin;Ahmad, Yaseen;Sardar, Sadia;Gul, Alia
    • 한국미생물·생명공학회지
    • /
    • 제50권2호
    • /
    • pp.245-254
    • /
    • 2022
  • Cellulases are a group of biocatalyst enzymes that are capable of degrading cellulosic biomass present in the natural environment and produced by a large number of microorganisms, including bacteria and fungi, etc. In the current study, we isolated, screened and characterized cellulase-producing bacteria from soil. Three cellulose-degrading species were isolated based on clear zone using Congo red stain on carboxymethyl cellulose (CMC) agar plates. These bacterial isolates, named as HB2, HS5 and HS9, were subsequently characterized by morphological and biochemical tests as well as 16S rRNA gene sequencing. Based on 16S rRNA analysis, the bacterial isolates were identified as Bacillus cerus, Bacillus subtilis and Bacillus stratosphericus. Moreover, for maximum cellulase production, different growth parameters were optimized. Maximum optical density for growth was also noted at pH 7.0 for 48 h for all three isolates. Optical density was high for all three isolates using meat extract as a nitrogen source for 48 h. The pH profile of all three strains was quite similar but the maximum enzyme activity was observed at pH 7.0. Maximum cellulase production by all three bacterial isolates was noted when using lactose as a carbon rather than nitrogen and peptone. Further studies are needed for identification of new isolates in this region having maximum cellulolytic activity. Our findings indicate that this enzyme has various potential industrial applications.

Effective Microwell Plate-Based Screening Method for Microbes Producing Cellulase and Xylanase and Its Application

  • Kim, Jennifer Jooyoun;Kwon, Young-Kyung;Kim, Ji Hyung;Heo, Soo-Jin;Lee, Youngdeuk;Lee, Su-Jin;Shim, Won-Bo;Jung, Won-Kyo;Hyun, Jung-Ho;Kwon, Kae Kyoung;Kang, Do-Hyung;Oh, Chulhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권11호
    • /
    • pp.1559-1565
    • /
    • 2014
  • Cellulase and xylanase are main hydrolysis enzymes for the degradation of cellulosic and hemicellulosic biomass, respectively. In this study, our aim was to develop and test the efficacy of a rapid, high-throughput method to screen hydrolytic-enzyme-producing microbes. To accomplish this, we modified the 3,5-dinitrosalicylic acid (DNS) method for microwell plate-based screening. Targeted microbial samples were initially cultured on agar plates with both cellulose and xylan as substrates. Then, isolated colonies were subcultured in broth media containing yeast extract and either cellulose or xylan. The supernatants of the culture broth were tested with our modified DNS screening method in a 96-microwell plate, with a $200{\mu}l$ total reaction volume. In addition, the stability and reliability of glucose and xylose standards, which were used to determine the enzymatic activity, were studied at $100^{\circ}C$ for different time intervals in a dry oven. It was concluded that the minimum incubation time required for stable color development of the standard solution is 20 min. With this technique, we successfully screened 21 and 31 cellulase- and xylanase-producing strains, respectively, in a single experimental trial. Among the identified strains, 19 showed both cellulose and xylan hydrolyzing activities. These microbes can be applied to bioethanol production from cellulosic and hemicellulosic biomass.

Cellulosic Nanomaterial Production Via Fermentation by Komagataeibacter sp. SFCB22-18 Isolated from Ripened Persimmons

  • Park, Myung Soo;Jung, Young Hoon;Oh, Seung-Yoon;Kim, Min Ji;Bang, Won Yeong;Lim, Young Woon
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.617-624
    • /
    • 2019
  • Bacterial nanocellulose (BNC) which is generally synthesized by several species of bacteria has a wide variety of industrial uses, particularly in the food and material industries. However, the low levels of BNC production during the fermentation process should be overcome to reduce its production cost. Therefore, in this study, we screened and identified a new cellulose-producing bacterium, optimized production of the cellulose, and investigated the morphological properties of the cellulosic materials. Out of 147 bacterial isolates from ripened fruits and traditional vinegars, strain SFCB22-18 showed the highest capacity for BNC production and was identified as Komagataeibacter sp. based on 16S rRNA sequence analysis. During 6-week fermentation of the strain using an optimized medium containing 3.0% glucose, 2.5% yeast extract, 0.24% acetic acid, 0.27% $Na_2HPO_4$, and 0.5% ethanol at $30^{\circ}C$, about 5 g/l of cellulosic material was produced. Both imaging and IR analysis proved that the produced cellulose would be nanoscale bacterial cellulose.