DOI QR코드

DOI QR Code

Mitigation of Membrane Biofouling in MBR Using a Cellulolytic Bacterium, Undibacterium sp. DM-1, Isolated from Activated Sludge

  • Nahm, Chang Hyun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Seonki (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Sang Hyun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Kibaek (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Jaewoo (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kwon, Hyeokpil (School of Chemical and Biological Engineering, Seoul National University) ;
  • Choo, Kwang-Ho (Department of Environmental Engineering, Kyungpook National University) ;
  • Lee, Jung-Kee (Department of Biomedicinal Science and Biotechnology, Paichai University) ;
  • Jang, Jae Young (Pure Envitech Co., Ltd.) ;
  • Lee, Chung-Hak (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Pyung-Kyu (Department of Environmental Engineering, Yonsei University)
  • Received : 2016.10.05
  • Accepted : 2017.01.03
  • Published : 2017.03.28

Abstract

Biofilm formation on the membrane surface results in the loss of permeability in membrane bioreactors (MBRs) for wastewater treatment. Studies have revealed that cellulose is not only produced by a number of bacterial species but also plays a key role during formation of their biofilm. Hence, in this study, cellulase was introduced to a MBR as a cellulose-induced biofilm control strategy. For practical application of cellulase to MBR, a cellulolytic (i.e., cellulase-producing) bacterium, Undibacterium sp. DM-1, was isolated from a lab-scale MBR for wastewater treatment. Prior to its application to MBR, it was confirmed that the cell-free supernatant of DM-1 was capable of inhibiting biofilm formation and of detaching the mature biofilm of activated sludge and cellulose-producing bacteria. This suggested that cellulase could be an effective anti-biofouling agent for MBRs used in wastewater treatment. Undibacterium sp. DM-1-entrapping beads (i.e., cellulolytic-beads) were applied to a continuous MBR to mitigate membrane biofouling 2.2-fold, compared with an MBR with vacant-beads as a control. Subsequent analysis of the cellulose content in the biofilm formed on the membrane surface revealed that this mitigation was associated with an approximately 30% reduction in cellulose by cellulolytic-beads in MBR.

Keywords

References

  1. Judd S. 2010. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment. Elsevier, Amsterdam. Netherlands.
  2. Xiong Y, Liu Y. 2010. Biological control of microbial attachment: a promising alternative for mitigating membrane biofouling. Appl. Microbiol. Biotechnol. 86: 825-837. https://doi.org/10.1007/s00253-010-2463-0
  3. Yigit N, Harman I, Civelekoglu G, Koseoglu H, Cicek N, Kitis M. 2008. Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions. Desalination 231: 124-132. https://doi.org/10.1016/j.desal.2007.11.041
  4. Sweity A, Ying W, Ali-Shtayeh MS, Yang F, Bick A, Oron G, Herzberg M. 2011. Relation between EPS adherence, viscoelastic properties, and MBR operation: biofouling study with QCM-D. Water Res. 45: 6430-6440. https://doi.org/10.1016/j.watres.2011.09.038
  5. Kjelleberg S, Givskov M. 2007. The Biofilm Mode of Life: Mechanisms and Adaptations. Horizon Scientific Press, UK.
  6. Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ. 2006. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ. Microbiol. 8: 1997-2011. https://doi.org/10.1111/j.1462-2920.2006.01080.x
  7. Serra DO, Richter AM, Hengge R. 2013. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195: 5540-5554. https://doi.org/10.1128/JB.00946-13
  8. Solano C, Garcia B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43: 793-808. https://doi.org/10.1046/j.1365-2958.2002.02802.x
  9. Matthysse AG, McMahan S. 1998. Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl. Environ. Microbiol. 64: 2341-2345.
  10. Spiers AJ, Rainey PB. 2005. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiology 151: 2829-2839. https://doi.org/10.1099/mic.0.27984-0
  11. Trivedi A, Mavi PS, Bhatt D, Kumar A. 2016. Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat. Commun. 7: 11392. https://doi.org/10.1038/ncomms11392
  12. Loiselle M, Anderson KW. 2003. The use of cellulase in inhibiting biofilm formation from organisms commonly found on medical implants. Biofouling 19: 77-85. https://doi.org/10.1080/0892701021000030142
  13. Rajasekharan SK, Ramesh S. 2013. Cellulase inhibits Burkholderia cepacia biofilms on diverse prosthetic materials. Pol. J. Microbiol. 62: 327-330.
  14. Dow JM, Crossman L, Findlay K, He Y-Q, Feng J-X, Tang JL. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100: 10995-11000. https://doi.org/10.1073/pnas.1833360100
  15. Munoz C, Hidalgo C, Zapata M, Jeison D, Riquelme C, Rivas M. 2014. Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Appl. Environ. Microbiol. 80: 4199-4206. https://doi.org/10.1128/AEM.00827-14
  16. Robledo M, Rivera L, Jimenez-Zurdo JI, Rivas R, Dazzo F, Velazquez E, et al. 2012. Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb. Cell Fact. 11: 125. https://doi.org/10.1186/1475-2859-11-125
  17. O'Toole GA. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. pii: 2437.
  18. Deng Y, Lim A, Lee J, Chen S, An S, Dong Y-H, Zhang L-H. 2014. Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens. BMC Microbiol. 14: 1. https://doi.org/10.1186/1471-2180-14-1
  19. Lequette Y, Boels G, Clarisse M, Faille C. 2010. Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry. Biofouling 26: 421-431. https://doi.org/10.1080/08927011003699535
  20. Nijland R, Hall MJ, Burgess JG. 2010. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5:e15668. https://doi.org/10.1371/journal.pone.0015668
  21. Lee S, Park S-K, Kwon H, Lee SH, Lee K, Nahm CH, et al. 2016. Crossing the border between laboratory and field: bacterial quorum quenching for anti-biofouling strategy in an MBR. Environ. Sci. Technol. 50: 1788-1795. https://doi.org/10.1021/acs.est.5b04795
  22. Lee JM, Heitmann JA, Pawlak JJ. 2007. Rheology of carboxymethyl cellulose solutions treated with cellulases. BioResources 2: 20-33.
  23. Kim S-R, Oh H-S, Jo S-J, Yeon K-M, Lee C-H, Lim D-J, et al. 2013. Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects. Environ. Sci. Technol. 47: 836-842. https://doi.org/10.1021/es303995s
  24. Lee SH, Lee S, Lee K, Nahm CH, Kwon H, Oh H-S, et al. 2016. More efficient media design for enhanced biofouling control in a membrane bioreactor: quorum quenching bacteria entrapping hollow cylinder. Environ. Sci. Technol. 50: 8596-8604. https://doi.org/10.1021/acs.est.6b01221
  25. Updegraff DM. 1969. Semimicro determination of cellulose in biological materials. Anal. Biochem. 32: 420-424. https://doi.org/10.1016/S0003-2697(69)80009-6
  26. Scott Jr TA, Melvin EH. 1953. Determination of dextran with anthrone. Anal. Chem. 25: 1656-1661. https://doi.org/10.1021/ac60083a023
  27. Zhang H, Jie X, Yang Y, Wang Z, Yang F. 2009. Mechanism of calcium mitigating membrane fouling in submerged membrane bioreactors. J. Environ. Sci. 21: 1066-1073. https://doi.org/10.1016/S1001-0742(08)62383-9
  28. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S-I, Lee YC. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72. https://doi.org/10.1016/j.ab.2004.12.001
  29. Bio-Rad. Manual I. Quick $^Start{TM}$ Bradford Protein Assay. BioRad Laboratories, Hercules, CA. USA.
  30. Teather RM, Wood PJ. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777-780.
  31. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3: a010306.
  32. Cheng K-C, Catchmark JM, Demirci A. 2009. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 3: 1. https://doi.org/10.1186/1754-1611-3-1
  33. Wang Z, Wu Z, Tang S. 2009. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Res. 43: 2504-2512. https://doi.org/10.1016/j.watres.2009.02.026
  34. Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426: 306-310. https://doi.org/10.1038/nature02122
  35. Sachidanandham R, Yew-Hoong Gin K, Laa Poh C. 2005. Monitoring of active but non-culturable bacterial cells by flow cytometry. Biotechnol. Bioeng. 89: 24-31. https://doi.org/10.1002/bit.20304
  36. Takei T, Ikeda K, Ijima H, Kawakami K. 2011. Fabrication of poly(vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochem. 46: 566-571. https://doi.org/10.1016/j.procbio.2010.10.011

Cited by

  1. Membrane-based technologies for post-treatment of anaerobic effluents vol.1, pp.1, 2017, https://doi.org/10.1038/s41545-018-0021-y