• 제목/요약/키워드: cellulose paper

검색결과 429건 처리시간 0.032초

Characterization of Carboxylated Cellulose Nanocrystals from Recycled Fiberboard Fibers Using Ammonium Persulfate Oxidation

  • KHANJANZADEH, Hossein;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권2호
    • /
    • pp.231-244
    • /
    • 2020
  • As a way of finding value-added materials from waste medium density fiberboard (MDF), this study characterized cellulose nanocrystals (CNCs) isolated by ammonium persulfate (APS) oxidation using recycled MDF fibers. Chemical composition of the recycled MDF fibers was done to quantify α-cellulose, hemicellulose, lignin, nitrogen, ash and extractives. The APS oxidation was performed at 60 ℃ for 16 h, followed by ultrasonication, which resulted in a CNC yield of 11%. Transmission electron microscope images showed that rod-like CNCs had an average length and diameter of 167±47 nm and 8.24±2.28 nm, respectively, which gave an aspect ratio of about 20. The conductometric titration of aqueous CNCs suspension resulted in a carboxyl content of 0.24 mmol/g and the degree of oxidation was 0.04. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy clearly showed the presence of carboxyl group on the CNCs prepared by the APS oxidation. The change of pH of the aqueous CNC suspension from 4 to 7 converted the carboxyl group to sodium carboxylate group. These results showed that the APS oxidation was facile and CNCs had a one-step preparation method, and thus suggested an optimization of the oxidation condition in future.

알칼리 용제를 이용하여 제조한 셀룰로오스 겔의 카드뮴 흡착특성 (Cadmium Adsorption Characteristic of Cellulose-gel Manufacture using Alkali Solvent)

  • 황교정;권구중;양지욱;황원중;황재현;김대영
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.113-122
    • /
    • 2015
  • This study was carried out to investigate the characterization of cadmium adsorption by cellulose hydrogel and aerogel. Hydrogel and aerogel were made from ashless pulp dissolved in alkali hydroxide-urea aqueous solution and manufactured in film and bead types. After regeneration of cellulose, hydrogel went through the process of substitution of organic solvent and freeze-dry in order to make aerogel. SEM was used to analyze the microstructure of hydrogel and aerogel. Experiment was conducted in various concentrations and pH conditions to find out the characteristic of cadmium adsorption. After that, EDS was used to identify existence and distribution of cadmium in hydrogel and aerogel. The result from comparisons of cadmium adsorption shows that bead type aerogel has the maximum cadmium adsorption and film type hydrogel has the minimum cadmium adsorption.

인산처리 셀룰로오스를 첨가한 비수계 ER 유체의 전기유변학적 특성 (Electrorheological Properties of Anhydrous ER Suspensions Based on Phosphated Cellulose)

  • 안병길;최웅수;권오관;문탁진
    • Tribology and Lubricants
    • /
    • 제14권2호
    • /
    • pp.1-9
    • /
    • 1998
  • The electrorheological (ER) behavior of suspensions in silicone oil of phosphated cellulose particles (average particle size 17.77 ${\mu}{\textrm}{m}$) was investigated at room temperature with electric fields up to 2.5 KV/mm. In this paper, for development of anhydrous ER suspensions using at wide temperature range, we would like to know fundamental understandings on the ER activity. As a first step, the anhydrous ER suspensions dispersed the phosphated cellulose particles were measured, and not only the electrical characteristics such as dielectric constant, current density and electrical conductivity but also the rheological properties on strength of electric field and quantity of dispersed phase were studied. From the experimental results, the anhydrous ER suspensions dispersed phosphated cellulose particles showed a stable current density and very high performance of ER effect $(\tau/\tau_0=1030)$ on the 2.5 KV/mm and the dynamic yield stress $(\tau_y)$ was in exponential proportion to the strength of electric fields.

셀룰로우스섬유보강 콘크리트의 소성수축 균열에 관한 실험적 연구 (Experimental Study for Plastic Shrinkage Cracking of Cellulose Fiber Reinforced Concrete)

  • 원종필;박찬기;안태송
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.319-323
    • /
    • 1998
  • Plastic shrinkage cracking is a major concern for concrete, especially for flat structures as highway pavement, slabs for parking garages, and walls. One of the methods to reduce the adverse effect of plastic shrinkage cracking is to reinforced concrete with short randomly distributed fibers. The contribution of cellulose fiber to the plastic shrinkage crack reduction potential of cement composites and its evaluation are presented in this paper. The effects of differing amounts of fibers(0.9kg/㎥, 1.3kg/㎥, 1.5kg/㎥) were studied. The results of tests of the cellulose fiber reinforced concrete were compared with plain concrete and polypropylene fiber reinforced concrete. Results indicated that cellulose fiber reinforcement showed an ability to reduce the total area and maximum crack width significantly(as compared to plain concreted to plain concrete and polypropylene fiber concrete).

  • PDF

셀룰로우스 섬유 보강 시멘트 복합체의 내구성에 관한 연구 (Durability Characteristics of Cellulose Fiber Reinforced Cement Composite)

  • 원종필;문제길
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.1-6
    • /
    • 1996
  • Cellulose fiber reinforced cement composites manufactured by the slurry-dewatering process have found broad applications in thin cement products as replacement for asbestos cement. This paper focuses on the durability characteristics of these composites under different aging conditions. The effects of wetting-drying and freezing-thaw cycles, carbonation, and exposure to hot and humid environments on the structure and properties of cellulose fiber-cement composites were investigated. The predominant mechanisms of aging in the composites were identified through investigation of structure-property relationships. Measures to control these aging mechanisms were diversed and evaluated. Refined cellulose fiber-cement composites are shown to possess excellent durability characteristics under the effects of various aging processes.

  • PDF

Time-Dependent Behavior of Saturated Cellulose Fiber Reinforced Cement(CFRC) Pipe

  • Choi, Yeol
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.161-164
    • /
    • 2006
  • Cellulose fiber reinforced cement(CFRC) pipe has been gradually introduced in the pipe market as a replacement of previously popular asbestos cement pipes. Since CFRC pipe is still relatively unknown in the pipe market, there are great concerns for the design and application in practice related to the time-dependent behavior of CFRC under long-term sustained loading. This paper presents an experimental investigation of the time-dependent behavior of cellulose fiber reinforced cement(CFRC) pipe. A total of six CFRC pipes were tested under various loading levels, and their vertical deformation was recorded to understand the characteristics of the time-dependent behavior. Based on the test results, a factor of safety(FS) of 1.82 is proposed, and a regression factor(R) of 1.88 is estimated for the application of CFRC pipes in practice.

Bolld Compatibility of Cellulose Membrane with Phosphonolipid Polar Groups

  • Lee, M.K.;Kim, M.S.;Jung, S.K.;Park, S.M.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1994년도 추계 총회 및 학술발표회
    • /
    • pp.14-16
    • /
    • 1994
  • Requirements for the hemodialysis membrane are excellent permeability for water and solute, mechanical strength and blood compatibility. Many synthetic polymer membranes have been invertigated to raise the efficiency of dialysis, however, 85% of the worldwide hemodialysis still uses cellulose membrane. Though the cellulose membrane has both good permeability and mechenical properties, its blood compatibility needs to be improved for hemodialysis. In this paper, 2-(methacryloyloxy)ethyl-2-(trimethyl ammonium) ethyl phosphate(MTP) and Glycidylmethacrylate(GMA) were grafted on the cellulose membranes to make blood compa- tible membranes.

  • PDF

폐섬유자원의 기효공학적 이용에 관한 연구(제IV보)섬유질 자화세균의 분이및 동정 (Studies on the Fermentative Utilization of Cellulosic Wastes.(Part IV) Isolation and Identification of Cellulose Assimilating Bacteria.)

  • 성낙기;신기환
    • 한국미생물·생명공학회지
    • /
    • 제5권1호
    • /
    • pp.1-4
    • /
    • 1977
  • 폐섬유자원을 기질로 하여 단세포단백을 생산할 목적으로 225종의 균원시료에서 252주의 섬유소자화세균을 분리하였고 이들 중 섬유소 자화력인 가장 강한 균 1주를 동정한 결과 Cellulomonas flavigena와 일치하였다.

  • PDF

Production and Characterization of Crystalline Cellulose-Degrading Cellulase Components from a Thermophilic and Moderately Alkalophilic Bacterium

  • Kim, Dong-Soo;Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권1호
    • /
    • pp.7-13
    • /
    • 1992
  • A moderately thermophilic, alkalophlic and powerful crystalline cellulose-digesting bacterium, Bacillus K-12, was isolated from filter paper wastes and found to be similar to Bacillus circulans or Bacillus pumilis, except for its ability to grow at a moderately high pH and temperature. The isolate grew at a pH ranging from 6 to 10 and at a temperature ranging from 35 to $65^{\circ}C$ and produced a large amount of cellulase components containing avicelase, xylanase, CMCase, and FPase when grown in avicel medium for 5 to 7 days at $50^{\circ}C$. The crude enzyme preparation from the culture broth hydrolyzed xylan, raw starch, pullulan and ${\beta}-1,3$ glucan such as laminarin. Furthermore, the enzyme hydrolyzed crystalline cellulose to cellobiose and glucose and had a broad pH activity curve (pH 6~9). The enzyme was stable up to $70^{\circ}C$.

  • PDF