• Title/Summary/Keyword: cellulose crystallinity

Search Result 111, Processing Time 0.032 seconds

Production and Structural Analysis of Cellulose by Acetobacter sp. V6 Using Static Culture (정치배양을 이용하여 Acetobacter sp. V6의 셀룰로오스 생산 최적화 및 구조 분석)

  • Kim, Jeong-Do;Jung, Ho-Il;Jeong, Jin-Ha;Park, Ki-Hyun;Jeon, Young-Dong;Hwang, Dae-Youn;Lee, Chung-Yeol;Son, Hong-Joo
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.275-280
    • /
    • 2009
  • The optimal medium compositions for the production of bacterial cellulose (BC) by a Acetobacter sp. V6, which was isolated from the traditionally fermented vinegar in Korea, were investigated in static cultures. The optimum medium compositions for BC production were 3% glucose, 3% soytone, 0.8% $K_2HPO_4$, and 0.4% ethanol, respectively. Adding $NaH_2PO_4$ or $KH_2PO_4$ had not shown the increase in BC production. Under the optimum medium compositions, the highest BC production was 44.67 g/$m^2$ in 8 days and the thickness of BC pellicle was about 1 cm. Structural properties of BC produced in the optimal medium were studied using Fourier-transform infrared spectroscopy and X-ray diffractometer. BC from the optimal medium was found to be of cellulose type I, the same as typical native cellulose. No difference in the compositions between bacterial and plant celluloses, but BC showed unique micro-network structure and high crystallinity (82%).

Extraction of Hemicellulosic Sugar and Acetic Acid from Different Wood Species with Pressurized Dilute Acid Pretreatment

  • Um, Byung-Hwan;Park, Seong-Jik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.172-182
    • /
    • 2014
  • Extraction is a necessary element in the bioconversion of lignocellulosics to fuels and chemicals. Although various forms of chemical pretreatment of cellulosic materials have been proposed, their effectiveness varies depending on the treatment conditions and substrate. In this study, mixed hardwood (MH) and loblolly pine (LP) were pretreated with dilute acid in a 100 mL accelerated solvent extraction (ASE) at the predetermined optimal conditions: temperature: $170^{\circ}C$, acid concentration: 0.5% (w/v), and reaction time: 2~64 min. This method was highly effective for extracting the hemicellulose fraction. Total xmg (defined as the sum of xylose, mannose, and galactose) can be extracted from milled MH and LP through pressurized dilute acid treatment in maximum yields of 12.6 g/L and 15.3 g/L, respectively, representing 60.5% and 70.4% of the maximum possible yields, respectively. The crystallinity index increased upon pretreatment, reflecting the removal of the amorphous portion of biomass. The crystalline structure of the cellulose in the biomass, however, was not changed by the ASE extraction process.

Structure and Oil Sorption Capacity of Kapok Fiber [Ceibapentandra (L.) Gaertn.] (케이폭의 구조 및 흡유 특성)

  • Lee, Young-Hee;Lee, Jung-Hee;Son, Su-Jin;Lee, Dong-Jin;Jung, Young-Jin;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.210-218
    • /
    • 2011
  • The structure of kapok fiber was characterized using FTIR and $^{13}C$-NMR spectrometers, elemental analyzer, x-ray diffractometer, SEM and IMT I-Solution ver 7.5. The kapok has a hollow tube shape and is composed of cellulose I with crystallinity of 47.95%. To develop novel oil-sorbent materials necessary to avoid the environmental pollution by spilled oil, the oil absorption capacity of various fibers such as kapok, polypropylene(PP), acryl, bamboo, cotton, rayon and wool fibers is compared in this study. The kapok fiber had the highest oil absorption capacity among the fibers and its water absorption capacity was the least. The kapok fiber selectively absorbed significant amounts of oils (43g/g of fiber for kerosene, 65g/g of fiber for soybean oil), which might be due to higher hydrophobicity of the kapok fiber, suggesting that kapok fiber may have high potential as excellent oil-absorbent materials.

Physical Properties and Dyeability of Cotton Fabrics Treated with Liquid Ammonia (액체암모니아 처리 면직물의 물성 및 염색성)

  • Jeon, Sung-Ki;Lee, Chang-Soo;Im, Yong-Jin;Lee, Chung;Kim, Tae-Kyung;Lee, Hye-Jung
    • Textile Coloration and Finishing
    • /
    • v.15 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • It is generally known that cotton treated with liquid ammonia has better soft handle, wrinkle recoveries and stability of appearance as compared with the alkali mercerized cotton. In this study, the various cotton fabrics treated with liquid ammonia$(NH_3)$, sodium hydroxide(NaOH) and sodium hydroxide(NaOH)/liquid ammonia$(NH_3)$ and untreated cotton fabric were investigated and compared in terms of physical properties and dyeing behavior. As the result, the strength of four kinds of cotton fabrics were similar. But the elongation of cotton treated with liquid ammonia increased slightly. Liquid ammonia treatment reduced the crystallinity of cotton and the crystalline structure of cotton transformed from cellulose 1 to mixed structure of celluloseIand III. In dyeing, dyeing rate decreased but equilibrium dye uptake increased by liquid ammonia treatment of cotton fabrics.

Fractionation of Extracellular Cellulase Pproduced by Cellulomonas and Reaction Mechanisms of the Isolated Enzymes (Cellulomonas가 생산하는 균체의 Cellulase의 분리 및 분리된 효소의 작용기작)

  • Kim Byung Hong;Wimpenny, J.W.T.
    • Korean Journal of Microbiology
    • /
    • v.23 no.1
    • /
    • pp.25-33
    • /
    • 1985
  • The cell-free cellulolytic enzyme was separated into 3 different enzyme proteins by gel-filtration and ion-exchange chromatography. These fractions were named enzyme A, enzyme B and enzyme C. The mode of action of each of the separated enzymes on crystalline cellulose was examined using infrared spectroscopy and X-ray crystallography. It was concluded that enzyme B is of the $C_1-type$ and reduces the crystallinity of the subatrate by generation an unstable glucopyranose ring structure, whilst enzymes A and C are of the $C_x-type$ and hydrolyse the reaction product of enzyme B to constituent sugars. A reaction scheme for this cellulase system is proposed and discussed.

  • PDF

Cell Wall Deterioration of the Tripitaka Koreana Wooden Plates (팔만대장경판의 세포벽 열화)

  • Park, So-Yoon;Kang, Ae-Kyung;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.55-60
    • /
    • 1996
  • Tripitaka Koreana were made during Coryo Dynasty from 1236 to 1251 A.D. Buddhist scriptures were engraved on 81.340 wooden plates. Some plates were varnished with Rhus lacquer, but most of them were uncoated. Macroscopically, most of the plates appeared intact due to the storage in a well-ventilated wooden house. Because, they were irregularly used for printings with ink, it can be assumed that they were repeatedly exposed to ink-water and drying processes. The present were made to examine the changes of wood cell structures occurred during long-term aging deterioration processes in these dry archaeological wooden plates. Light, scanning and transmission electron microscopes were employed for this study. Wedge-shaped cracks and delamilations were found from the lumen side toward the compound middle lamellae and they progressed toward primary or secondary walls. A large amount of hypae in vessels and the degradation of vessel-ray pit walls by the fungal hyphae were observed. When compared to the recent wood, the birefringence of wood fibers was considerably lower or completly disappeared, suggesting the degradation of crystalline cellulose in these wood samples. The degradation of the cell wall could be also revealed the calculation of crystallinity with X-ray diffraction and the size of crystalline region was estimated.

  • PDF

Manufacturing and Characterization of Red algae fiber/Polypropylene Biocomposites (홍조류섬유보강 폴리프로필렌 바이오복합재료의 제조 및 특성 분석)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.178-182
    • /
    • 2008
  • The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose, furthermore, it has higher thermal decomposition temperature than that of the microcrystalline cellulose(MCC). Polypropylene biocomposites reinforced with BRAF have been fabricated with various BRAF contents by compression molding method and their mechanical and thermomechanical properties have been studied. The mechanical strength as tensile, impact and flexural modulus of BRAF/PP biocomposites were gradually improved with increasing the BRAF content, and thermal property which against the thermal expansion was markdly improved, especially. These results are compared with chopped non-woody fibers as Henequen or Kenaf, BRAF was more effective for fabrication of biocomposites reinforced small-sized fibers. The red algae fiber reinforced biocomposites has the applicability such as electronics, biodegradable products and small-structure composites.

  • PDF

Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending(I) (미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(I))

  • Jung, Young-Jin;An, Byung-Jae;Kim, Hong-Sung;Choi, Hae-Wook;Lee, Eon-Pil;Lee, Jae-Ho;Kim, Han-Do;Park, Soo-Min;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • Regenerated composite fibers are prepared from solution(styela clava tunics /poly vinyl alchol) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt/wt) as a solvent by dry-wet spinning. The chemical cellulose (94%, ${\alpha}$-cellulose content) used for this study is extracted from styela clava tunics (SCT, Midduck), which are treated in chemical process and mechanical grinding. The structure and physical properties of regenerated composite fibers were investigated through IR-spetra, DSC, TGA and SEM. The optimal blend ratio of SCT/PVA for spinning solution was 70/30 and the total weight was 4% concentrations in NMMO/water solvent system. The fiber density, moisture contents and the degree of swelling were $1.5(g/cm^3)$ 10.2(%) and 365(%), respectively. The crystallinity index of composite fibers are decreased as the PVA contents increased. Thermal decomposition of composite fibers took place in two stages at around $250^{\circ}C$ and $550^{\circ}C$. The best thermal stability was obtained with 30% PVA contents.

Enhanced Production of Bacterial Cellulose in Komagataeibacter xylinus Via Tuning of Biosynthesis Genes with Synthetic RBS

  • Hur, Dong Hoon;Choi, Woo Sung;Kim, Tae Yong;Lee, Sang Yup;Park, Jin Hwan;Jeong, Ki Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1430-1435
    • /
    • 2020
  • Bacterial cellulose (BC) has outstanding physical and chemical properties, including high crystallinity, moisture retention, and tensile strength. Currently, the major producer of BC is Komagataeibacter xylinus. However, due to limited tools of expression, this host is difficult to engineer metabolically to improve BC productivity. In this study, a regulated expression system for K. xylinus with synthetic ribosome binding site (RBS) was developed and used to engineer a BC biosynthesis pathway. A synthetic RBS library was constructed using green fluorescent protein (GFP) as a reporter, and three synthetic RBSs (R4, R15, and R6) with different strengths were successfully isolated by fluorescence-activated cell sorting (FACS). Using synthetic RBS, we optimized the expression of three homologous genes responsible for BC production, pgm, galU, and ndp, and thereby greatly increased it under both static and shaking culture conditions. The final titer of BC under static and shaking conditions was 5.28 and 3.67 g/l, respectively. Our findings demonstrate that reinforced metabolic flux towards BC through quantitative gene expression represents a practical strategy for the improvement of BC productivity.

Study of the Crystal Structure of a Lyocell Precursor for Carbon Fibers (탄소섬유용 리오셀 전구체의 결정구조에 관한 연구)

  • Park, Gil-Young;Kim, Woo-Sung;Lee, Su-Oh;Hwang, Tae-Kyung;Kim, Yun-Chul;Seo, Sang-Kyu;Chung, Yong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.36-42
    • /
    • 2019
  • In this study, the pre-treatment of lyocell fabrics was performed using phosphoric acid (PA) as a phosphorus flame retardant and melamine resin (MR) as a cross-linking agent to fabricate carbon fabrics using lyocell fibers. The physical and chemical changes were investigated by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD) and weight analysis. We confirmed that the weight yield of the carbon fabrics compared to the untreated fabrics increased by 14.7%, and width and length yield of the fabrics increased by 15% and 15.5%, respectively. This may be due to the effect of promoting the dehydration reaction of cellulose, forming char on the fiber surface, which induces a crosslinking reaction in the cellulose molecule and stabilizes the structure upon pyrolysis.