• Title/Summary/Keyword: cellulase activities

Search Result 277, Processing Time 0.027 seconds

Polyphenolic Contents and Antioxidant Activities of Underutilized Grape (Vitis vinifera L.) Pomace Extracts

  • Kabir, Faisal;Sultana, Mosammad Shahin;Kurnianta, Heri
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.210-214
    • /
    • 2015
  • Grape pomace is an abundant source of underutilized winery by-products. Polyphenols were extracted from grape pomace using cellulase and gluco-amylase enzymes. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu's assays were used to measure antioxidant activity and total polyphenolic contents. Both cellulase, and gluco-amylase digested grape pomace showed efficient radical scavenging activity. In addition, the total polyphenolic contents of cellulase digested grape pomace showed lower concentrations were effective compared to higher concentrations, whereas glucoamylase enzyme did not show remarkable variations. The DPPH radical scavenging activity and total polyphenolic contents were significantly higher in the cellulase digested grape pomace compared to the gluco-amylase digested and the not digested grape pomace. It is notable that enzymatic digestions were efficient for extracting polyphenols from grape pomace. The underutilized grape pomace polyphenols can be further used for food safety as a natural antioxidant.

Characterization of Cellulase from Bacillus subtilis NSC Isolated from Soil (토양으로부터 단리한 Bacillus subtilis NSC 유래 Cellulase의 특성 규명)

  • Kim, Sang Jin;Park, Chang-Su
    • Journal of Chitin and Chitosan
    • /
    • v.23 no.4
    • /
    • pp.228-233
    • /
    • 2018
  • We isolated microorganisms from soil, which is sampled at forest, Kyeonbuk, Korea, as cellulolytic microorganisms. The isolated strains were identified by analysis of 16S rRNA gene from the starins. The result, four kinds of Bacillus subtilis, one kind of Bacillus amyloliquefaciens, and one kind of Bacillus cereus were identified. Among these strains, Bacillus subtilis was selected due to its high cellulase activity and this strain was named as Bacillus subtilis CNS. The optimum pH and temperature of the cellulase from Bacillus subtilis CNS was pH 5.0 and $40^{\circ}C$, respectively. In the investigation of pH and temperature stability, the cellulase from Bacillus subtilis NSC stabled pH 4.0~6.0 range and until $40^{\circ}C$ for 30 min perfectly. In the enzyme activity for various cellulosic substrate, cellulase from Bacillus subtilis CNS showed the highest activity for CM-cellulose. And, the enzyme activities for alkali swollen cellulose, Alpha-cellulose, Sigmacell-cellulose, and Avicel were approximately 31%, 8%, 8% and 4% of activity for CM-cellulose, respectively. In the degradation of CM-cellulose, the 0.26 U/ml and 0.52 U/ml of cellulase showed 0.43 and 0.76 U/ml activity for CM-cellulose after the reaction of 120 min, respectively.

Activities of Several Hydrolytic Enzymes in the Pear Leaves Affected by Rust Fungus, Gymnosporangium haraeanum Sydow (배나무적성병 병반조직의 몇가지 가수분해효소의 활성)

  • Kim K. C.;Cho B. H.;Kook J. A.
    • Korean journal of applied entomology
    • /
    • v.17 no.3 s.36
    • /
    • pp.139-142
    • /
    • 1978
  • Activities of several hydrolytic enzymes in the rusted pear loaves were estimated. Tested enzymes were cellulase (Cx), invertase $\beta-amylase$, pectinase (pectinmethylesterase and polygalacturonase), and phosphatase. Enzyme activities represented by pH value-enzyme activitycurve. Activities of Cx. invertase. and $\beta-amylase$ were higher in the healthy part than those in the near-lesion and lesion parts. and showed the maximal activities around pH 7.0. On the other hand, activities of pectinase and phosphatase were higher in the lesion and near-lesion parts than in the healthy part. Pectinmethylesterase activities in the healthy and diseased parts were different with different curve-pattern as the pH of treating solution changed.

  • PDF

Isolation of a Bacillus licheniformis DK42 Producing Cellulase and Xylanase, and Properties of the Enzymes (Cellulase 및 Xylanase를 분비하는 Bacillus licheniformis DK42의 분리 및 효소 특성)

  • Kim, Min Jeong;Lim, Soo Jin;Kang, Dae-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.429-436
    • /
    • 2008
  • A bacterium producing cold-active cellulase and xylanase was isolated from pig feces. The isolate, DK42 strain, was found to be the Gram-positive, non-motile, catalase-positive, and spore-forming stain. Under an electron microscope, the cells were observed to be rod-shaped. The isolate was identified as Bacillus licheniformis DK42 on the basis of morphological and biochemical properties as well as 16S rRNA gene sequences. The characterization of crude cellulase and xylanase from B. licheniformis DK42 was investigated. Cellulase exhibited an optimum temperature and pH at 45℃ and 6.0, whereas xylanase exhibited an optimum temperature and pH at 55℃ and 6.0. Especially cellulase maintained approx. 50% of its maximum activity even at 10℃, indicating that it is cold-active. Both cellulase and xylanase were stable after 2hr at 35℃, whereas they lost their activities after 30min at 65℃.

Studies on Cellulase -Part 1. Isolation of Cellulase Forming Microorganisms and the Properties of Crude Enzymes- (Cellulase에 관(關)한 연구(硏究) -(제1보(第一報)) Cellulase 생성균(生成菌)의 분리(分離)와 조효소(粗酵素)의 제성질(諸性質)-)

  • Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.109-117
    • /
    • 1969
  • Out of some 400 strains of Microorganisms, cellulase forming organisms was isolated from night soil during the course of screening tests. Two strains, Ku-3371 and Ku-4383 were found capable of producing cellulase in the shaking culture. General properties of the crude enzyme were as the following results. 1. The optimum pH values on CMC-saccharifying, CMC-liquefying and filter paper disintegrating activities were 4.0 to 5.5. 2. The stable pH range was within 3.5 to 6.5, 3. The optimum temperature was $40-45^{\circ}C$, the thermal stability was below $50^{\circ}C$ except on paper disintegrating activity and completely inactivated at $70^{\circ}C$. 4. Dialyzed crude enzyme was activated by $Mn^{2+}\;and\;Co^{2+}$ repectively but $Hg^{2+}$ was strong inhibitor.

  • PDF

Hydrolysis of Paper Mill Sludge Using an Improved Enzyme System

  • Lin Jianqiang;Lee, Sang-Mok;Koo, Yoon-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.362-368
    • /
    • 2001
  • The effects of water soluble materials in paper mill sludge on cellulase and $\beta$-glucosidase activities were studied while the optimization of enzyme system for hydrolysis of the paper mill sludge for production of glucose was made. Water soluble materials in the paper mill sludge showed stimulatory effect on carboxymethyl cellulose (CMC) activity, inhibitory effect on filter paper (FP) activity, and no effect on avicelase and $\beta$-glucosidase activities. CMC and ${\beta}$-glucosidase activities at 5 and 10, 5 or 10 and 10, and 10 and 10 U/ml were optimal for hydrolysis of 5, 10, and 20% of the paper mill sludge, respectively.

  • PDF

Studies on the Cellulase produced by Myriococcum of albomyces (Myriococcum albomyces가 생산하는 Cellulase에 관한 연구)

  • Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.14 no.1
    • /
    • pp.59-97
    • /
    • 1971
  • As a study on the cellulase of Myriococcum albomyces the culture media for enzyme formation and properties of its crude preparation were investigated and the crude enzyme preparation was further fractionated. The results are summarized as follows: 1. Wheat bran solid culture produced stronger activities of cellulase than rice bran or defatted soy bean meal solid culture. 2. Shaking culture with wheat bran, rice bran or defatted soy bean meal produced higher cellulase activities than solid culture with the corresponding media. 3. The enzyme formation was higher at $45^{\circ}C$ than at $37^{\circ}C$ or $50^{\circ}C$ regardless of the kind of culture medium. 4. The formation of CMCase activity was more promoted by organic nitrogen source than inorganic nitrogen source. 5. The formation of cellulase activities were increased 1.5 to 3.0-fold by adding CMC, Avicel or cellulose powder as an inducer into 5% wheat bran basal medium. 6. Cellulase production using a tank culture procedure with addition of CMC or Avicel as an inducer was the highest at fifth day and thereafter decreased slightly. 7. The crude enzyme preparation showed pH optimum in 4.0 to 4.5, and pH stability in the range of 3.5 to 8.0. Optimum temperature for the activity was $65^{\circ}C$ which was higher than among other cellulases and it was stable at $60^{\circ}C$ for 120 minutes. 8. Dialyzed crude enzyme was activated by $Ca^{++}$ and $Mg^{++}$, but inhibited by $Hg^{++}$, $Cu^{++}$ and $Ag^{+}$. 9. Four different types of cellulase, i. e., fraction I, fraction II-a, fraction II-b, and fraction III were purified from the culture filtrate of Myriococcum albomyces through a sequence of ammonium sulfate fractionation, and elution chromatography on DEAE-Sephadex A-25, Amberlite CG-25 type 2 and hydroxyapatite columns. 10. These four cellulase fractions were showed to be homogenous by electrophoresis and ultracentrifugation and also gave a typical ultraviolet absorption spectrum of protein. 11. Four purified fraction showed different specificity toward substrates, fraction I has a stronger activity toward Avicel, cellulose powder, and gauze than that of other cellulase fractions. Fraction II-a had a powerful activity toward cellobiose but it was almost inactive agaisnt fibrous cellulose contrary to fraction I. On the contrary, the main component fraction II-b had a fairly higher activity on CMC and Avicel. Activity of fraction II-b toward cellobiose was about one-third of that of fraction II-a and activity on Avicel was lower than that of fraction I. Fraction III had a more powerful activity in decreasing viscosity of CMC. 12. Final hydrolysis products of fibrous cellulose by each fraction were cellobiose and glucose. Whereas oligosaccharides were predominant in the early stage of hydrolysis, prolonged reaction produced more glucose than cellobiose. Fraction I and fraction II-a acted synergically on Avicel. 13. Optimum pH for the activities of cellulase fraction I, fraction II-a, fraction II-b and fraction III were found to be 5.5, 5.0, 4.0 and $4.0{\sim}4.5$, respectively. These fractions were found to be stable in the range of pH $3.0{\sim}7.5$. 14. Optimum temperature for the activities of fraction I, fraction II-a, fraction II-b, and fraction III were $50^{\circ}C$, $55^{\circ}C$, $60^{\circ}C$ and $55^{\circ}C$, respectively. No less of activity was found by heating 120 minutes at $55^{\circ}C$ and fraction II-a was more stable than the others at $60^{\circ}C$. 15. Fraction I and fraction II-b were activated by $Ca^{++}$ and $Mg^{++}$ but inhibited by $Hg^{++}$ and $Ag^{+}$.

  • PDF

Characterization of Cellulase and Xylanase from Bacillus subtilis NC1 Isolated from Environmental Soil and Determination of Its Genes (Bacillus subtilis NC1 유래 cellulase와 xylanase의 특성 규명 및 효소 유전자의 규명)

  • Park, Chang-Su;Kang, Dae-Ook;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.912-919
    • /
    • 2012
  • A Bacillus sp. strain producing celluase and xylanase was isolated from environmental soil with LB agar plate containing carboxymethylcellulose (CM-cellulose) and beechwood xylan stained with trypan blue as substrates, respectively. Based on the 16S rRNA gene sequence and API 50 CHL test, the strain was identified as B. subtilis and named B. subtilis NC1. The cellulase and xylanase from B. subtilis NC1 exhibited the highest activities for CM-cellulose and beechwood xylan as substrate, respectively, and both enzymes showed the maximum activity at pH 5.0 and $50^{\circ}C$. We cloned and sequenced the genes for cellulase and xylanase from genomic DNA of the B. subtilis NC1 by the shot-gun cloning method. The cloned cellulase and xylanase genes consisted of a 1,500 bp open reading frame (ORF) encoding a 499 amino acid protein with a calculated molecular mass of 55,251 Da and a 1,269 bp ORF encoding a 422 amino acid protein with a calculated molecular mass of 47,423 Da, respectively. The deduced amino acid sequences from the genes of cellulase and xylanase showed high identity with glycosyl hydrolases family (GH) 5 and 30, respectively.

Immobilization of Cellulases from Fomitopsis pinicola and Their Changes of Enzymatic Characteristics (흡착법에 의한 Fomitopsis pinicola 유래 cellulase의 고정화와 그에 따른 효소특성 변화)

  • Shin, Keum;Kim, Tae-Jong;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.251-261
    • /
    • 2010
  • Cellulase from Formiptosis pinicola KMJ812 is an efficient cellulose degradation enzyme complex, especially with a high ${\beta}$-glucosidase activity. In this study, the change in enzymatic characteristics by immobilization and the reduction of immobilized enzyme activity by repeated usages were evaluated using cellulases from F. pinicola KMJ812. Among tested four resins, Duolite A568 resin had the best enzyme activity yield with 61.7% cellulase activity and 64.4% ${\beta}$- glucosidase activity during the cellulase immobilization. The best reaction temperature was $55^{\circ}C$ for both cellulase and ${\beta}$-glucosidase activities which were higher than the unimmobilized soluble cellulases. The best reaction pH was 4.0 for cellulase activity which was a little more basic than a soluble form and 4.5 for ${\beta}$-glucosidase activity. The immobilized cellulase activity was remained 98% of the beginning activity after 72 h incubation at $50^{\circ}C$ and 50% of the beginning activity after eight times usage at $50^{\circ}C$.

Production of Cellulase and Xylanase for Enzymatic Deinking of Old Newspaper (고지탈묵용 Cellulase 및 Xylanase 생산)

  • 김욱한;손광희;복성해;오세균
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.527-533
    • /
    • 1992
  • The optimal conditions for cellulase and xylanase production by Trichoderma reesei 28217 were studied for enzymatic deinking of old newspaper. The amounts of cellulase and xylanase from the strain was varied by initial medium pH, Tween 80, inoculum size of spore suspension, and carbon and nitrogen sources. The optimal conditions for cellulase production were pH 5.0-6.5, 0.02% of Tween 80, 0.5-1.0% of inoculum size of spore suspension ($1{\times}10^{7}$/ml). cottonseed meal as nitrogen source, and corn flour as carbon source. On the other hand, the optimal conditions for xylanase production were pH 6.5, 0.01% of Tween 80, corn steep liquor as nitrogen source, and disintegrated old newspaper as carbon source. The inoculum size for xylanase production was the same as for cellulase production. The concomitant production of cellulase and xylanase in shake flask culture was efficiently induced in the medium containing 0.5% cottonseed meal as nitrogen source and 1.0% old newspaper and 2.0% corn flour as carbon sources. In this case the activities of cellulase and xylanase produced were 6.11-7.22 IU/mJ and 97.7 IU/ml. respectively. However, the cellulase production in $5{\ell}$ fermentor scale was slightly decreased compared with that in flask scale. Moreover, xylanase production was severely reduced in a fermentor scale. The study for the reason of decreased enzyme production in fermentor is further needed.

  • PDF