• 제목/요약/키워드: cellular senescence

검색결과 180건 처리시간 0.025초

Peroxiredoxin I participates in the protection of reactive oxygen species-mediated cellular senescence

  • Park, Young-Ho;Kim, Hyun-Sun;Lee, Jong-Hee;Cho, Seon-A;Kim, Jin-Man;Oh, Goo Taeg;Kang, Sang Won;Kim, Sun-Uk;Yu, Dae-Yeul
    • BMB Reports
    • /
    • 제50권10호
    • /
    • pp.528-533
    • /
    • 2017
  • Peroxiredoxin I (Prx I) plays an important role as a reactive oxygen species (ROS) scavenger in protecting and maintaining cellular homeostasis; however, the underlying mechanisms are not well understood. Here, we identified a critical role of Prx I in protecting cells against ROS-mediated cellular senescence by suppression of $p16^{INK4a}$ expression. Compared to wild-type mouse embryonic fibroblasts (WT-MEFs), Prx $I^{-/-}$ MEFs exhibited senescence-associated phenotypes. Moreover, the aged Prx $I^{-/-}$ mice showed an increased number of cells with senescence associated-${\beta}$-galactosidase (SA-${\beta}$-gal) activity in a variety of tissues. Increased ROS levels and SA-${\beta}$-gal activity, and reduction of chemical antioxidant in Prx $I^{-/-}$ MEF further supported an essential role of Prx I peroxidase activity in cellular senescence that is mediated by oxidative stress. The up-regulation of $p16^{INK4a}$ expression in Prx $I^{-/-}$ and suppression by overexpression of Prx I indicate that Prx I possibly modulate cellular senescence through $ROS/p16^{INK4a}$ pathway.

배양액내 지방함량의 변화가 신생흰쥐 피부섬유아세포의 노화와 지질과산화물 생성에 미치는 영향 (The Effect of Lipid Concentration in Culture Medium on Senescence and Lipid Peroxides Production of Fibroblast from Neonate Rats)

  • 장영애
    • Journal of Nutrition and Health
    • /
    • 제29권1호
    • /
    • pp.97-103
    • /
    • 1996
  • This study was performed to investigate the effects of lipid on cellular senescence, lipid peroxide production, and morphological changes. For this study we used primary skin fibroblasts from neonate rats grown in media various lipid contents. Fibroblasts were cultured until they lost their proliferation potential either in control medium (Dulbecco's modified Eagle's medium supplement with 10% fetal bovine serum) or in media supplemented with various concentrations of lipid-cholesterol rice component from bovine serum. Cumulative population doublings(CPD, as an index of cellular life span), and cellular thiobarbituric acid reactive substances (TBARS, as an index of lipid peroxide) concentrations were measured and morphological changes were observed. CPD were shortened with increasing lipid concentration in media ; 28.12 for cells grown in control medium and 13.42, 11.42, and 6.19 for those grown in 0.1%, 1% and 5% lipid rich components containing media, respectively. Cellular proliferation ratios were those grown in 5% lipid rich components containing media were delayed and they were degenerated soon. TBARS concentrations were increased with increasing concentration of lipid in media. Morphological changes were observed in cells grown in control medium by cellular senescence. Especially lipid droplets were observed in cells grown in 5% lipid rich components containing media. Therefore it seems that lipid contents in media had an effect on cellular proliferation and cellular life span, possibly via lipid peroxide production.

  • PDF

A Novel Role of Hyaluronic Acid and Proteoglycan Link Protein 1 (HAPLN1) in Delaying Vascular Endothelial Cell Senescence

  • Dan Zhou;Ji Min Jang;Goowon Yang;Hae Chan Ha;Zhicheng Fu;Dae Kyong Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.629-639
    • /
    • 2023
  • Cardiovascular diseases (CVDs) are the most common cardiovascular system disorders. Cellular senescence is a key mechanism associated with dysfunction of aged vascular endothelium. Hyaluronic acid and proteoglycan link protein 1 (HAPLN1) has been known to non-covalently link hyaluronic acid (HA) and proteoglycans (PGs), and forms and stabilizes HAPLN1-containing aggregates as a major component of extracellular matrix. Our previous study showed that serum levels of HAPLN1 decrease with aging. Here, we found that the HAPLN1 gene expression was reduced in senescent human umbilical vein endothelial cells (HUVECs). Moreover, a recombinant human HAPLN1 (rhHAPLN1) decreased the activity of senescence-associated β-gal and inhibited the production of senescence-associated secretory phenotypes, including IL-1β, CCL2, and IL-6. rhHAPLN1 also downregulated IL-17A levels, which is known to play a key role in vascular endothelial senescence. In addition, rhHAPLN1 protected senescent HUVECs from oxidative stress by reducing cellular reactive oxygen species levels, thus promoting the function and survival of HUVECs and leading to cellular proliferation, migration, and angiogenesis. We also found that rhHAPLN1 not only increases the sirtuin 1 (SIRT1) levels, but also reduces the cellular senescence markers levels, such as p53, p21, and p16. Taken together, our data indicate that rhHAPLN1 delays or inhibits the endothelial senescence induced by various aging factors, such as replicative, IL-17A, and oxidative stress-induced senescence, thus suggesting that rhHAPLN1 may be a promising therapeutic for CVD and atherosclerosis.

Transcriptomic Analysis of Cellular Senescence: One Step Closer to Senescence Atlas

  • Kim, Sohee;Kim, Chuna
    • Molecules and Cells
    • /
    • 제44권3호
    • /
    • pp.136-145
    • /
    • 2021
  • Senescent cells that gradually accumulate during aging are one of the leading causes of aging. While senolytics can improve aging in humans as well as mice by specifically eliminating senescent cells, the effect of the senolytics varies in different cell types, suggesting variations in senescence. Various factors can induce cellular senescence, and the rate of accumulation of senescent cells differ depending on the organ. In addition, since the heterogeneity is due to the spatiotemporal context of senescent cells, in vivo studies are needed to increase the understanding of senescent cells. Since current methods are often unable to distinguish senescent cells from other cells, efforts are being made to find markers commonly expressed in senescent cells using bulk RNA-sequencing. Moreover, single-cell RNA (scRNA) sequencing, which analyzes the transcripts of each cell, has been utilized to understand the in vivo characteristics of the rare senescent cells. Recently, transcriptomic cell atlases for each organ using this technology have been published in various species. Novel senescent cells that do not express previously established marker genes have been discovered in some organs. However, there is still insufficient information on senescent cells due to the limited throughput of the scRNA sequencing technology. Therefore, it is necessary to improve the throughput of the scRNA sequencing technology or develop a way to enrich the rare senescent cells. The in vivo senescent cell atlas that is established using rapidly developing single-cell technologies will contribute to the precise rejuvenation by specifically removing senescent cells in each tissue and individual.

Transcriptional Heterogeneity of Cellular Senescence in Cancer

  • Junaid, Muhammad;Lee, Aejin;Kim, Jaehyung;Park, Tae Jun;Lim, Su Bin
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.610-619
    • /
    • 2022
  • Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.

Vorinostat Induces Cellular Senescence in Fibroblasts Derived from Young and Aged Dogs

  • Kim, Min-Jung;Oh, Hyun-Ju;Setyawan, Erif Maha Nugraha;Choi, Yoo-Bin;Lee, Seok-Hee;Lee, Byeong-Chun
    • 한국임상수의학회지
    • /
    • 제34권1호
    • /
    • pp.27-33
    • /
    • 2017
  • Although HDACIs affect ubiquitously expressed histone deacetylase and increase cellular senescence, there has been little study on the effect of age on treatment with HDACIs. Accordingly, the purpose of this study was to compare cellular senescence status and vorinostat-induced senescence in fibroblasts derived from aged dogs compared to young dogs. Skin tissues were taken from young (1-year-old) and aged (7-year-old) male dogs, and fibroblasts were cultured without (control) or with 10 uM of vorinostat for 24 hr. Beta-galactosidase activity was assessed, and real-time polymerase chain reaction and western blotting were performed to analyze the expression levels of transcripts and proteins related to cellular senescence. Beta-galactosidase activity was higher in aged dogs compared to young dogs in the control group, and was increased by vorinostat treatment. Expression of p21, p53 and p16 transcripts was higher in the aged than in the young group, and all transcripts were affected by vorinostat in both young and aged groups. Western blot results showed lower H3K9 acetylation in the aged dogs compared to the young dogs, and the acetylation was increased by vorinostat treatment in both groups. However, there was no significant difference between the transcript or protein alterations induced by vorinostat.

The p53-p21Cip1/WAF1 Pathway Is Necessary for Cellular Senescence Induced by the Inhibition of Protein Kinase CKII in Human Colon Cancer Cells

  • Kang, Ji-Young;Kim, Jin Joo;Jang, Seok Young;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.489-494
    • /
    • 2009
  • We have previously shown that the down-regulation of protein kinase CKII activity is tightly associated with cellular senescence of human fibroblast IMR-90 cells. Here, we examined the roles of p53 and $p21^{Cip1/WAF1}$ in senescence development induced by CKII inhibition using wild-type, isogenic p53-/- and isogenic p21-/- HCT116 human colon cancer cell lines. A senescent marker appeared after staining for senescence-associated ${\beta}$-galactosidase activity in wild-type HCT116 cells treated with CKII inhibitor or $CKII{\alpha}$ siRNA, but this response was almost abolished in p53- or $p21^{Cip1/WAF1}$-null cells. Increased cellular levels of p53 and $p21^{Cip1/WAF1}$ protein occurred with the inhibition of CKII. CKII inhibition upregulated p53 and $p21^{Cip1/WAF1}$ expression at post-transcriptional level and transcription level, respectively. RB phosphorylation significantly decreased in cells treated with CKII inhibitor. Taken together, this study shows that the activation of the $p53-p21^{Cip1/WAF1}$ pathway acts as a major mediator of cellular senescence induced by CKII inhibition.

NF-κB in Cellular Senescence and Cancer Treatment

  • Jing, Hua;Lee, Soyoung
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.189-195
    • /
    • 2014
  • The NF-${\kappa}B$ pathway transcriptionally controls a large set of target genes that play important roles in cell survival, inflammation, and immune responses. While many studies showed anti-tumorigenic and pro-survival role of NF-${\kappa}B$ in cancer cells, recent findings postulate that NF-${\kappa}B$ participates in a senescence-associated cytokine response, thereby suggesting a tumor restraining role of NF-${\kappa}B$. In this review, we discuss implications of the NF-${\kappa}B$ signaling pathway in cancer. Particularly, we emphasize the connection of NF-${\kappa}B$ with cellular senescence as a response to chemotherapy, and furthermore, present examples how distinct oncogenic network contexts surrounding NF-${\kappa}B$ produce fundamentally different treatment outcomes in aggressive B-cell lymphomas as an example.

Links between accelerated replicative cellular senescence and down-regulation of SPHK1 transcription

  • Kim, Min Kyung;Lee, Wooseong;Yoon, Gang-Ho;Chang, Eun-Ju;Choi, Sun-Cheol;Kim, Seong Who
    • BMB Reports
    • /
    • 제52권3호
    • /
    • pp.220-225
    • /
    • 2019
  • We have identified a mechanism to diminish the proliferative capacity of cells during cell expansion using human adipose-derived stromal cells (hAD-SCs) as a model of replicative senescence. hAD-SCs of high-passage numbers exhibited a reduced proliferative capacity with accelerated cellular senescence. Levels of key bioactive sphingolipids were significantly increased in these senescent hAD-SCs. Notably, the transcription of sphingosine kinase 1 (SPHK1) was down-regulated in hAD-SCs at high-passage numbers. SPHK1 knockdown as well as inhibition of its enzymatic activity impeded the proliferation of hAD-SCs, with concomitant induction of cellular senescence and accumulation of sphingolipids, as seen in high-passage cells. SPHK1 knockdown-accelerated cellular senescence was attenuated by co-treatment with sphingosine-1-phosphate and an inhibitor of ceramide synthesis, fumonisin $B_1$, but not by treatment with either one alone. Together, these results suggest that transcriptional down-regulation of SPHK1 is a critical inducer of altered sphingolipid profiles and enhances replicative senescence during multiple rounds of cell division.

Duck Oil-loaded Nanoemulsion Inhibits Senescence of Angiotensin II-treated Vascular Smooth Muscle Cells by Upregulating SIRT1

  • Kang, Eun Sil;Kim, Hyo Juong;Han, Sung Gu;Seo, Han Geuk
    • 한국축산식품학회지
    • /
    • 제40권1호
    • /
    • pp.106-117
    • /
    • 2020
  • Cellular senescence is associated with age-related vascular disorders and has been implicated in vascular dysfunctions. Here, we show that duck oil-loaded nanoemulsion (DO-NE) attenuates premature senescence of vascular smooth muscle cells (VSMCs) triggered by angiotensin II (Ang II). Compared with control nanoemulsion (NE), DO-NE significantly inhibited the activity of senescence-associated β-galactosidase, which is a biomarker of cellular senescence, in Ang II-treated VSMCs. SIRT1 protein expression was dose- and time-dependently induced in VSMCs exposed to DO-NE, but not in those exposed to NE, and SIRT1 promoter activity was also elevated. Consistently, DO-NE also dose-dependently rescued Ang II-induced repression of SIRT1 expression, indicating that SIRT1 is linked to the anti-senescence action of DO-NE in VSMCs treated with Ang II. Furthermore, the SIRT1 agonist resveratrol potentiated the effects of DO-NE on VSMCs exposed to Ang II, whereas the SIRT1 inhibitor sirtinol elicited the opposite effect. These findings indicate that DO-NE inhibits senescence by upregulating SIRT1 and thereby impedes vascular aging triggered by Ang II.