• Title/Summary/Keyword: cellular adhesion

Search Result 218, Processing Time 0.025 seconds

Cellular Changes Resulting from Forced Expression of Glypican-3 in Hepatocellular Carcinoma Cells

  • Kwack, Mi Hee;Choi, Byung Yeol;Sung, Young Kwan
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.224-228
    • /
    • 2006
  • Glypican-3 (GPC3) is a member of the glypican family, which encodes cell-surface heparan-sulfate proteoglycans, and is frequently upregulated in hepatocellular carcinoma (HCC). We have recently reported that blocking endogenous GPC3 expression promotes the growth of HCC cell lines, suggesting that GPC3 plays a negative role in HCC cell proliferation. Here, we report that forced expression of GPC3 reduced the growth of HCC cells. We also found that FGF2-mediated cell proliferation was inhibited by GPC3. In addition, we observed that the adhesion of HCC cells to collagen type I and fibronectin was decreased by GPC3, whereas cellular migration and invasiveness were stimulated. Collectively, these results suggest that progression of hepatocellular carcinoma is associated with upregulation of GPC3.

The Chemokine SDF-1α Suppresses Fibronectin-mediated In Vitro Lymphocytes Adhesion

  • Ji, LiLi;Sheng, YuChen;Wang, ZhengTao
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.308-313
    • /
    • 2006
  • Stromal cell-derived factor (SDF-1) is a CXC chemokine that selectively activates the CXCR4 chemokine receptor. Fibronectin is an intracellular matrix component that binds integrin and mediates cell-matrix adhesion. Activation of the integrin receptor can occur in two ways: by ligand binding (outside-in signaling), and in response to intracellular events (inside-out signaling). In the current study we showed that SDF-$1{\alpha}$ inhibited adhesion of T lymphocyte Jurkat cells resulting from binding high concentrations of fibronectin as well as that of THP-1 monocytes. The effect of SDF-$1{\alpha}$ on fibronectin-mediated adhesion was partly reversed by the CXCR4 receptor antagonist T140. Our results suggest that an SDF-1/CXCR4 signal pathway modulates fibronectin-mediated lymphocytes adhesion.

Cell-cell Adhesion of Jurkat T Cells Induced by CD29 and CD98 Activation and its Application (CD29 및 CD98 활성 매개에 의한 Jurkat T 세포의 유착과 그 활용)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.53 no.3
    • /
    • pp.119-124
    • /
    • 2009
  • Cell-cell adhesion managed by various adhesion molecules plays an important role in regulating functional activation of cells. This event mediates attachment of inflammatory cells to endothelial cells, interaction of antigen-presenting cells with T cells and metastatic adherence of cancer cells to epithelial tissue cells. Therefore, this cellular response is considered as one of therapeutic target to treat various cancers and inflammatory diseases. To develop proper model for evaluation of functional activation of adhesion molecules, the ability of U937 and Jurkat T cells responsive to various adhesion inducers such as phorbal-12-myristate-13-acetate (PMA), staurosporin and monoclonal antibodies to CD29, CD43 and CD98 was investigated using quantitative cell-cell adhesion assay. U937 cells made more cell-cell clusters by the treatment of antibodies to CD29 and CD43 than Jurkat T cells, while Jurkat T cells exhibited increased cell-cell adhesion ability in CD98 antibody treatment. In agreement, the surface levels of CD29 and CD98 were highly observed in U937 and Jurkat T cells, respectively. Therefore, our data suggest that Jurkat T and U937 cells can be used for model system to evaluate functional activation of adhesion molecules such as CD29 and CD98.

Tyrosine Phosphorylation of Paxillin during Cell Adhesion

  • Chang, Jong-Soo;Lee, Hong-Mie;Min, Do-Sik
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.349-352
    • /
    • 2000
  • Proteins that are involved in cellular signal cascade experience phosphorylation and dephosphorylation cycles in their tyrosine residue(s) during cell adhesion. In order to identify the protein(s), which tyrosine desidues are specifically phosphorylated when the cells attached to the substrate, we compared the tyrosine phosphorylation level of proteins between suspension and adhered culture condition in rat fibroblast 3Yl cells. We found that a cluster of 70 kDa protein was specifically phosphorylated when the cells adhered to the substrate, but did not effect the cells held in suspension. The phosphorylated protein is identified as paxillin, a focal adhesion protein in immunoprecipitation and immunobloting analysis. These results suggest that the tyrosine phosphorylation of paxillin may play a role in cell-substrate adhesion.

  • PDF

Surface Modification of Biomaterials for Hard Tissue Substitutes to Improve Biocompatibility and Osteoconductivity (생체적합성 및 골전도성 향상을 위한 경조직 대체용 생체재료의 표면개질)

  • Kim, Sung-Wook;Lee, Woo-Kul
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.725-730
    • /
    • 2005
  • In the development of biomaterials as a substitute of hard tissues, the biocompatibility and osteoconductivity of the biomaterial are considered to be one of the most significant considerations. These biological properties of a material can be greatly improved by the modification of the surface properties by the depositing calcium phosphate thin films on the material since calcium phosphate films possess similar chemical compositions to hard tissues. The success of a material as a biomaterial will be determined by the interaction of the surface of the material with the adhesion molecules which induce cellular adhesion and biological responses of the adherent cells. Depending on the adsorption mechanisms and adsorbed conformation of the adhesion molecules on the surface of the biomaterial, cellular responses, such as adhesion, proliferation and differentiation of osteoblast cells, can be promoted or restricted. It has been reported that materials of which surfaces were modified with thin films of calcium phosphate appeared to be more osteoconductive. Rapid formations of bone nodule in addition to higher differentiations of osteoblast have been observed on the calcium phosphate thin films.

EphB/ephrinB Signaling in Cell Adhesion and Migration

  • Park, Inji;Lee, Hyun-Shik
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Eph receptors and their ligands, ephrins, represent the largest group of the receptor tyrosine kinase (RTK) family, and they mediate numerous developmental processes in a variety of organisms. Ephrins are membrane-bound proteins that are mainly divided into two classes: A class ephrins, which are linked to the membrane by a glycosylphosphatidylinositol (GPI) linkage, and B class ephrins, which are transmembrane ligands. Based on their domain structures and affinities for ligand binding, the Eph receptors are also divided into two groups. Trans-dimerization of Eph receptors with their membrane-tethered ligands regulates cell-cell interactions and initiates bidirectional signaling pathways. These pathways are intimately involved in regulating cytoskeleton dynamics, cell migration, and alterations in cellular dynamics and shapes. The EphBs and ephrinBs are specifically localized and modified to promote higher-order clustering and initiate of bidirectional signaling. In this review, we present an in-depth overview of the structure, mechanisms, cell signaling, and functions of EphB/ephrinB in cell adhesion and migration.

Cytotoxicity and biocompatibility of high mol% yttria containing zirconia

  • Gulsan Ara Sathi Kazi;Ryo Yamagiwa
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.52.1-52.11
    • /
    • 2020
  • Objectives: Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. Materials and Methods: Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. Results: The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. Conclusions: The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.

Molecular association of CD98, CD29, and CD147 critically mediates monocytic U937 cell adhesion

  • Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.515-523
    • /
    • 2016
  • Adhesion events of monocytes represent an important step in inflammatory responses induced by chemokines. The ${\beta}1$-integrin CD29 is a major adhesion molecule regulating leukocyte migration and extravasation. Although several adhesion molecules have been known as regulators of CD29, the molecular interactions between CD29 and its regulatory adhesion molecules (such as CD98 and CD147) have not been fully elucidated. Therefore, in this study, we examined whether these molecules are functionally, biochemically, and cell-biologically associated using monocytic U937 cells treated with aggregation-stimulating and blocking antibodies, as well as enzyme inhibitors. The surface levels of CD29, CD98, and CD147 (but not CD43, CD44, and CD82) were increased. The activation of CD29, CD98, and CD147 by ligation of them with aggregation-activating antibodies triggered the induction of cell-cell adhesion, and sensitivity to various enzyme inhibitors and aggregation-blocking antibodies was similar for CD29-, CD98-, and CD147-induced U937 cell aggregation. Molecular association between these molecules and the actin cytoskeleton was confirmed by confocal microscopy and immunoprecipitation. These results strongly suggest that CD29 might be modulated by its biochemical and cellular regulators, including CD98 and CD147, via the actin cytoskeleton.