Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2116

EphB/ephrinB Signaling in Cell Adhesion and Migration  

Park, Inji (ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
Lee, Hyun-Shik (ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
Abstract
Eph receptors and their ligands, ephrins, represent the largest group of the receptor tyrosine kinase (RTK) family, and they mediate numerous developmental processes in a variety of organisms. Ephrins are membrane-bound proteins that are mainly divided into two classes: A class ephrins, which are linked to the membrane by a glycosylphosphatidylinositol (GPI) linkage, and B class ephrins, which are transmembrane ligands. Based on their domain structures and affinities for ligand binding, the Eph receptors are also divided into two groups. Trans-dimerization of Eph receptors with their membrane-tethered ligands regulates cell-cell interactions and initiates bidirectional signaling pathways. These pathways are intimately involved in regulating cytoskeleton dynamics, cell migration, and alterations in cellular dynamics and shapes. The EphBs and ephrinBs are specifically localized and modified to promote higher-order clustering and initiate of bidirectional signaling. In this review, we present an in-depth overview of the structure, mechanisms, cell signaling, and functions of EphB/ephrinB in cell adhesion and migration.
Keywords
cell adhesion; cell migration; development; EphB; ephrinB;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Himanen, J P., Yermekbayeva, L., Janes, P.W., Walker, J.R., Xu, K., Atapattu, L., Rajashankar, K.R., Mensinga, A., Lackmann, M., Nikolov, D.B., et al. (2010). Architecture of Eph receptor clusters. Proc. Natl. Acad. Sci. USA 107, 10860-10865.   DOI   ScienceOn
2 Holland, S.J., Gale, N.W., Mbamalu, G., Yancopoulos, G.D., Henkemeyer, M., and Pawson, T. (1996). Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722-725.   DOI   ScienceOn
3 Hwang, Y.S., Lee, H.S., Kamata, T., Mood, K., Cho, H.J., Winterbottom, E., Ji, Y.J., Singh, A., and Daar, I.O. (2013). The Smurf ubiquitin ligases regulate tissue separation via antagonistic interactions with ephrinB1. Genes Dev. 27, 491-503.   DOI   ScienceOn
4 Huynh-Do, U., Stein, E., Lane, A.A., Liu, H., Cerretti, D.P., and Daniel, T.O. (1999). Surface densities of ephrin-B1 determine EphB1- coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. EMBO J. 18, 2165-2173.   DOI   ScienceOn
5 Janes, P.W., Saha, N., Barton, W.A., Kolev, M.V., Wimmer- Kleikamp, S. H., Nievergall, E., Blobel, C. P., Himanen, J. P., Lackmann, M., and Nikolov, D.B. (2005). Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123, 291-304.   DOI   ScienceOn
6 Janes, P.W., Wimmer-Kleikamp, S.H., Frangakis, A.S., Treble, K., Griesshaber, B., Sabet, O., Grabenbauer, M., Ting, A.Y., Saftig, P., Bastiaens, P.I., et al. (2009). Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10. PLoS Biol. 7, e1000215.   DOI   ScienceOn
7 Ji, Y.J., Hwang, Y.S., Mood, K., Cho, H.J., Lee, H.S., Winterbottom, E., Cousin, H., and Daar, I.O. (2014). EphrinB2 affects apical constriction in Xenopus embryos and is regulated by ADAM10 and flotillin-1. Nat. Commun. 5, 3516.
8 Jorgensen, C., Sherman, A., Chen, G.I., Pasculescu, A., Poliakov, A,, Hsiung, M., Larsen, B., Wilkinson, D.G., Linding, R., and Pawson, T. (2009). Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326, 1502-1509.   DOI   ScienceOn
9 Jones, T.L., Chong, L.D., Kim, J., Xu, R.H., Kung, H.F., and Daar, I.O. (1998). Loss of cell adhesion in Xenopus laevis embryos mediated by the cytoplasmic domain of XLerk, an erythropoietinproducing hepatocellular ligand. Proc. Natl. Acad. Sci. USA 95, 576-581.   DOI
10 Kalo, M.S., and Pasquale, E.B. (1999). Signal transfer by eph receptors. Cell Tissue Res. 298, 1-9.   DOI
11 Lee, H.S., and Daar, I.O. (2009). EphrinB reverse signaling in cellcell adhesion: is it just par for the course? Cell Adh. Migr. 3, 250-255.   DOI   ScienceOn
12 Lee, H.S., Bong, Y.S., Moore, K.B., Soria, K., Moody. S.A., and Daar, I.O. (2006). Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway. Nat. Cell. Biol. 8, 55-63.   DOI   ScienceOn
13 Lee, H.S., Nishanian, T.G., Mood, K., Bong, Y.S., and Daar, I.O. (2008). EphrinB1 controls cell-cell junctions through the Par polarity complex. Nat. Cell. Biol. 10, 979-986.   DOI   ScienceOn
14 Lee, H.S., Mood, K., Battu, G., Ji, Y.J., Singh, A., and Daar, I.O. (2009). Fibroblast growth factor receptor-induced phosphorylation of ephrinB1 modulates its interaction with dishevelled. Mol. Biol. Cell. 20, 124-133.   DOI   ScienceOn
15 Makinen, T., Adams, R.H., Bailey, J., Lu, Q., Ziemiecki, A., Alitalo, K., Klein, R., and Wilkinson, G.A. (2005). PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397-410.   DOI   ScienceOn
16 Nagashima, K., Endo, A., Ogita, H., Kawana, A., Yamagishi, A., Kitabatake, A., Matsuda, M., and Mochizuki, N. (2002). Adaptor protein Crk is required for ephrin-B1-induced membrane ruffling and focal complex assembly of human aortic endothelial cells. Mol. Biol. Cell. 13, 4231-4242.   DOI   ScienceOn
17 Marston, D.J., Dickinson, S., and Nobes, C.D. (2003). Racdependent transendocytosis of ephrinBs regulates Eph-ephrin contact repulsion. Nat. Cell Biol. 5, 879-888.   DOI   ScienceOn
18 Margolis, S.S., Salogiannis, J., Lipton, D.M., Mandel-Brehm, C., Wills, Z.P., Mardinly, A.R., Hu, L., Greer, P.L., Bikoff, J.B., Ho, H.Y., et al. (2010). EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143, 442-455.   DOI   ScienceOn
19 Moore, K.B., Mood, K., Daar, I.O., and Moody, S.A. (2004). Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. Dev. Cell 6, 55-67.   DOI   ScienceOn
20 Noren, N.K., and Pasquale, E.B. (2007). Paradoxes of the EphB4 receptor in cancer. Cancer Res. 67, 3994-3997.   DOI   ScienceOn
21 Palmer, A. Zimmer, M., Erdmann, K.S., Eulenburg, V., Porthin, A., Heumann, R., Deutsch, U., and Klein, R. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol. Cell 9, 725-737.   DOI   ScienceOn
22 Park, E.C., Cho, G.S., Kim, G.H., Choi, S.C., and Han, J.K. (2011). The involvement of Eph-Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements. Dev. Biol. 350, 441-450.   DOI   ScienceOn
23 Parker, M., Roberts, R., Enriquez, M., Zhao, X., Takahashi, T., Pat Cerretti, D., Daniel, T., and Chen, J. (2004). Reverse endocytosis of transmembrane ephrin-B ligands via a clathrin-mediated pathway. Biochem. Biophys. Res. Commun. 323, 17-23.   DOI   ScienceOn
24 Pitulescu, M.E., and Adams, R.H. (2010). Eph/ephrin molecules-a hub for signaling and endocytosis. Genes Dev. 24, 2480-2492.   DOI   ScienceOn
25 Pasquale, E.B. (2005). Eph receptor signaling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6, 462-475.   DOI   ScienceOn
26 Pasquale, E.B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell 133, 38-52.   DOI   ScienceOn
27 Perez-Moreno, M., and Fuchs, E. (2006). Catenins: keeping cells from getting their signals crossed. Dev. Cell 11, 601-612.   DOI   ScienceOn
28 Poliakov, A., Cotrina, M., and Wilkinson, D.G. (2005). Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465-480.
29 Rohani, N., Canty, L., Luu, O., Fagotto, F., and Winklbauer, R. (2011). EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. PLoS Biol. 9, e1000597.   DOI   ScienceOn
30 Sahin, M., Greer, P.L., Lin, M.Z., Poucher, H., Eberhart, J., Schmidt, S., Wright, T.M., Shamah, S.M., O'Connell, S., Cowan, C.W., et al. (2005). Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46, 191-204.   DOI   ScienceOn
31 Salvucci, O., Maric, D., Economopoulou, M., Sakakibara, S., Merlin, S., Follenzi, A., and Tosato, G. (2009). EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures. Blood 114, 1707-1716.   DOI   ScienceOn
32 Santiago, A., and Erickson, C.A. (2002). Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development 129, 3621-3632.
33 Stein, E., Lane, A.A., Cerretti, D.P., Schoecklmann, H.O., Schroff, A.D., Van Etten, R.L., and Daniel, T.O. (1998). Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667-678.   DOI
34 Seiradake, E., Harlos, K., Sutton, G., Aricescu, A.R., and Jones, E.Y. (2010). An extracellular steric seeding mechanism for Ephephrin signaling platform assembly. Nat. Struct. Mol. Biol. 17, 398-402.   DOI   ScienceOn
35 Senturk, A., Pfennig, S., Weiss, A., Burk, K., and Acker-Palmer, A. (2011). Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration. Nature 472, 356-360.   DOI   ScienceOn
36 Solanas, G., Cortina, C., Sevillano, M., and Batlle, E. (2011). Cleavage of Ecadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat. Cell Biol. 13, 1100-1107.   DOI   ScienceOn
37 Tanaka, M., Kamata, R., and Sakai, R. (2005). Phosphorylation of ephrin-B1 via the interaction with claudin following cell-cell contact formation. EMBO J. 24, 3700-3711.   DOI   ScienceOn
38 Tanaka, M., Sasaki, K., Kamata, R., and Sakai, R. (2007). The Cterminus of ephrin-B1 regulates metalloproteinase secretion and invasion of cancer cells. J. Cell Sci. 120, 2179-2189.   DOI   ScienceOn
39 Thelemann, A., Petti, F., Griffin, G., Iwata, K., Hunt, T., Settinari, T., Fenyo, D., Gibson, N., and Haley, J.D. (2005). Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol. Cell Proteomics 4, 356-376.   DOI   ScienceOn
40 Torres-Vazquez, J., Kamei, M., and Weinstein, B.M. (2003). Molecular distinction between arteries and veins. Cell Tissue Res. 314, 43-59.   DOI
41 Wimmer-Kleikamp, S.H., and Lackmann, M. (2005). Ephmodulated cell morphology, adhesion and motility in carcinogenesis. IUBMB Life 57, 421-431.   DOI   ScienceOn
42 van de Wetering, M., Sancho, E., Verweij, C., de Lau, W., Oving, I., Hurlstone, A., van der Horn, K., Batlle, E., Coudreuse, D., Haramis, A.P., et al. (2002). The -catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241-250.   DOI   ScienceOn
43 Wang, H.U., Chen, Z.F., and Anderson, D.J. (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741-753.   DOI   ScienceOn
44 Wang, Y., Nakayama, M., Pitulescu, M.E., Schmidt, T.S., Bochenek, M.L., Sakakibara, A., Adams, S., Davy, A., Deutsch, U., Luthi, U., et al. (2010). Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483-486.   DOI   ScienceOn
45 Winning, R.S., Wyman, T.L., and Walker, G.K. (2001). EphA4 activity causes cell shape change and a loss of cell polarity in Xenopus laevis embryos. Differentiation 68, 126-132.   DOI   ScienceOn
46 Xu, N.J., and Henkemeyer, M. (2002). Ephrin reverse signaling in axon guidance and synaptogenesis. Semin. Cell Dev. Biol. 23, 58-64.
47 Zimmer, M., Palmer, A., Kohler, J., and Klein, R. (2003). EphBephrinB bidirectional endocytosis terminates adhesion allowing contact mediated repulsion. Nat. Cell Biol. 5, 869-878.   DOI   ScienceOn
48 Zisch, A.H., Pazzagli, C., Freeman, A.L., Schneller, M., Hadman, M., Smith, J.W., Ruoslahti, E., and Pasquale, E.B. (2000). Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene 19, 177-187.   DOI
49 Adams, R.H, Diella, F., Hennig, S., Helmbacher, F., Deutsch, U., and Klein, R. (2001). The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104, 57-69.   DOI   ScienceOn
50 Adams, R. H., Wilkinson, G. A., Weiss, C., Diella, F., Gale, N. W., Deutsch, U., Risau, W. and Klein, R. (1999). Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295-306.   DOI
51 Bong, Y.S., Park, Y.H., Lee, H.S., Mood, K., Ishimura, A., and Daar, I.O. (2004). Tyr-298 in ephrinB1 is critical for an interaction with the Grb4 adaptor protein. Biochem. J. 377, 499-507.   DOI
52 Arvanitis, D.N., Behar, A., Tryoen-Toth, P., Bush, J.O., Jungas, T., Vitale, N., and Davy, A. (2013). Ephrin B1 maintains apical adhesion of neural progenitors. Development 140, 2082-2092.   DOI   ScienceOn
53 Batlle, E., Henderson, J.T., Beghtel, H., van den Born, M.M., Sancho, E., Huls, G., Meeldijk, J., Robertson, J., van de Wetering, M., Pawson, T., et al. (2002). Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251-263.   DOI   ScienceOn
54 Becker, E., Huynh-Do, U., Holland, S., Pawson, T., Daniel, T.O., and Skolnik, E.Y. (2000). Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol. Cell. Biol. 20, 1537-1545.   DOI
55 Bong, Y.S., Lee, H.S., Carim-Todd, L., Mood, K., Nishanian, T.G., Tessarollo, L., and Daar, I.O. (2007). ephrinB1 signals from the cell surface to the nucleus by recruitment of STAT3. Proc. Natl. Acad. Sci. USA 104, 17305-17310.   DOI   ScienceOn
56 Bruckner, K., Pasquale, E.B., and Klein, R. (1997). Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640-1643.   DOI   ScienceOn
57 Bush, J.O., and Soriano, P. (2009). Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism. Genes Dev. 23, 1586-1599.   DOI   ScienceOn
58 Cho, H.J., Hwang, Y.S., Mood, K., Ji, Y.J., Lim, J., Morrison, D.K., and Daar, I.O. (2014). EphrinB1 Interacts with CNK1 and Promotes Cell Migration through JNK Activation. J. Biol. Chem. 289, 18556-18568.   DOI   ScienceOn
59 Cortina, C., Palomo-Ponce, S., Iglesias, M., Fernandez-Masip, J.L., Vivancos, A., Whissell, G., Huma, M., Peiro, N., Gallego, L., Jonkheer, S., et al. (2007). EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat. Genet. 39, 1376-1383.   DOI   ScienceOn
60 Chong, L.D., Park, E.K., Latimer, E., Friesel, R., and Daar, I.O. (2000). Fibroblast growth factor receptor-mediated rescue of xephrin B1-induced cell dissociation in Xenopus embryos. Mol. Cell. Biol. 20, 724-734.   DOI
61 Cowan, C.A., and Henkemeyer, M. (2001). The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174-179.   DOI   ScienceOn
62 Daar, I.O. (2012). Non-SH2/PDZ reverse signaling by ephrins. Semin. Cell Dev. Biol. 23, 65-74.   DOI   ScienceOn
63 Davy, A., Aubin, J., and Soriano, P. (2004). Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 18, 572-583.   DOI   ScienceOn
64 Davy, A., Bush, J.O., and Soriano, P. (2006). Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol. 4, e315.   DOI   ScienceOn
65 Dodelet, V.C., Pazzagli, C., Zisch, A.H., Hauser, C.A., and Pasquale, E.B. (1999). A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. J. Biol. Chem. 274, 31941-31946.   DOI
66 Dravis, C., and Henkemeyer, M. (2011). Ephrin-B reverse signaling controls septation events at the embryonic midline through separate tyrosine phosphorylation-independent signaling avenues. Dev. Biol. 355, 138-151.   DOI   ScienceOn
67 Han, D.C., Shen, T.L., Miao, H., Wang, B., and Guan, J.L. (2002). EphB1 associates with Grb7 and regulates cell migration. J. Biol. Chem. 277, 45655-45661.   DOI   ScienceOn
68 Elowe, S., Holland, S.J., Kulkarni, S., and Pawson, T. (2001). Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for Ephrin-induced neurite retraction. Mol. Cell. Biol. 21, 7429-7441.   DOI   ScienceOn
69 Georgakopoulos, A., Litterst, C., Ghersi, E., Baki, L., Xu, C., Serban, G., and Robakis, N.K. (2006). Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J. 25, 1242-1252.   DOI   ScienceOn
70 Gerety, S.S., and Anderson, D.J. (2002). Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129, 1397-1410.
71 Hattori, M., Osterfield, M., and Flanagan, J.G. (2000). Regulated cleavage of a contact-mediated axon repellent. Science 289, 1360-1365.   DOI
72 Herbert, S.P., Huisken, J., Kim, T.N., Feldman, M.E., Houseman, B.T., Wang, R.A., Shokat, K.M., and Stainier, D.Y. (2009). Arterial- venous segregation by selective cell sprouting: An alternative mode of blood vessel formation. Science 326, 294-298.   DOI   ScienceOn
73 Himanen, J.P., Rajashankar, K.R., Lackmann, M., Cowan, C.A., Henkemeyer, M., and Nikolov, D.B. (2001). Crystal structure of an Eph receptor-ephrin complex. Nature 414, 933-938.   DOI   ScienceOn
74 Himanen, J.P., Saha N., and Nikolov, D.B. (2007). Cell-cell signaling via Eph receptors and ephrins. Curr. Opin. Cell Biol. 19, 534-542.   DOI   ScienceOn