Surface Modification of Biomaterials for Hard Tissue Substitutes to Improve Biocompatibility and Osteoconductivity

생체적합성 및 골전도성 향상을 위한 경조직 대체용 생체재료의 표면개질

  • Kim, Sung-Wook (Laboratory of Biomaterials and Biointerface Research, Department of Chemical Engineering, Institute of Advances in Science and Technology, Dankook University) ;
  • Lee, Woo-Kul (Laboratory of Biomaterials and Biointerface Research, Department of Chemical Engineering, Institute of Advances in Science and Technology, Dankook University)
  • 김성욱 (단국대학교 미래과학기술연구소 화학공학과 생체재료/생체계면 연구실) ;
  • 이우걸 (단국대학교 미래과학기술연구소 화학공학과 생체재료/생체계면 연구실)
  • Received : 2005.11.16
  • Published : 2005.12.10

Abstract

In the development of biomaterials as a substitute of hard tissues, the biocompatibility and osteoconductivity of the biomaterial are considered to be one of the most significant considerations. These biological properties of a material can be greatly improved by the modification of the surface properties by the depositing calcium phosphate thin films on the material since calcium phosphate films possess similar chemical compositions to hard tissues. The success of a material as a biomaterial will be determined by the interaction of the surface of the material with the adhesion molecules which induce cellular adhesion and biological responses of the adherent cells. Depending on the adsorption mechanisms and adsorbed conformation of the adhesion molecules on the surface of the biomaterial, cellular responses, such as adhesion, proliferation and differentiation of osteoblast cells, can be promoted or restricted. It has been reported that materials of which surfaces were modified with thin films of calcium phosphate appeared to be more osteoconductive. Rapid formations of bone nodule in addition to higher differentiations of osteoblast have been observed on the calcium phosphate thin films.

경조직 대체용 생체재료의 개발에 있어서 재료의 생체적합성 및 골전도성은 가장 중요한 고려사항 중의 하나이다. 인산칼슘 박막은 경조직과 화학적 성분이 매우 유사하기 때문에 재료의 표면에 인산칼슘 박막을 형성함으로써 재료의 생물학적 성질을 매우 증진시킬 수 있다. 생체재료의 성공여부는 재료의 표면에 대한 부착단백질의 작용에 의해 결정되는데, 이는 부착단백질들이 세포의 부착 및 부착된 세포의 생물학적 반응을 유도하기 때문이다. 재료의 표면에 대한 부착단백질들의 흡착기전과 흡착된 입체구조에 따라 조골세포의 부착, 증식, 그리고 분화와 같은 세포반응이 향상되거나 또는 억제된다. 인산칼슘 박막에 의해 개질된 생체재료의 경우 골전도성이 높은 것으로 알려져 있다. 조골세포의 분화 정도가 증가함은 물론 뼈 결절들이 신속하게 형성되는 것이 관찰되었다.

Keywords

References

  1. J. Lincks, B. D. Boyan, C. R. Blanchard, C. H. Lohmann, Y. Liu, D. L. Cochran, D. D. Dean, and Z. Schwartz, Biomaterials, 19, 2219 (1998) https://doi.org/10.1016/S0142-9612(98)00144-6
  2. C. S. Koontz, W. K. Ramp, R. D. Peindl, K. K. Kaysinger, and M. E. Harrow, J. Biomed. Mater. Res., 45, 238 (1998)
  3. J. C. Hambleton, Z. Schwartz, S. W. Windeler, M. H. Luna, B. P. Brooks, A. G. Khare, D. D. Dean, and B. B. Boyan, J. Orthop. Res., 12, 542 (1994) https://doi.org/10.1002/jor.1100120411
  4. M. B. Pabbruwe, O. C. Standard, C. C. Sorrell, and C. R. Howelett, Biomaterials, 25, 4901 (2004) https://doi.org/10.1016/j.biomaterials.2004.01.005
  5. Y. Okada, M. Kobayashi, M. Neo, S. Shinzato, M. Matsushita, T. Kokubo, and T. Nakamura, J. Biomed, Mater. Res., 49, 106 (2000) https://doi.org/10.1002/(SICI)1097-4636(200001)49:1<106::AID-JBM13>3.0.CO;2-W
  6. M. A. Germain, A. Hatton, S. Williams, J. B. Matthews, M. H. Stone, J. Fisher, and E. Ingham, Biomaterials, 24, 469 (2003) https://doi.org/10.1016/S0142-9612(02)00360-5
  7. J. Rehman, J. C. Knowles, and W. Bonfield, J. Biomed. Mater. Res., 41, 162 (1998) https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<162::AID-JBM19>3.0.CO;2-P
  8. H. Oonishi, L L. Hench, J. Wilson, F. Sugihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamoto, and S. Mizokawa, J. Biomed. Mater. Res., 51, 37 (2000) https://doi.org/10.1002/(SICI)1097-4636(200007)51:1<37::AID-JBM6>3.0.CO;2-T
  9. H. B. Wen, J. Moradian-Oldak, J. P. Zhong, D. C. Greenspan, and A. G. Fincham, J. Biomed Mater. Res., 52, 762 (2000) https://doi.org/10.1002/1097-4636(20001215)52:4<762::AID-JBM22>3.0.CO;2-W
  10. H. Yuan, J. D. de Bruijin, X. Zhang, C. A. van Blitterswijk, and K. de Groot, J. Biomed. Mater. Res., 58, 270 (2001)
  11. S. Ozawa and S. Kasugai, Biomaterials, 17, 23 (1996) https://doi.org/10.1016/0142-9612(96)80751-4
  12. A. Lucke, J. Tebmar, E. Schnell, G. Schmeer, and A. Gopferich, Biomaterials, 21, 2361 (2000) https://doi.org/10.1016/S0142-9612(00)00103-4
  13. H.-R. Lin, C.-J. Kuo, C. Y. Yang, S.-Y. Shaw, and Y.-J. Wu, J. Biomed. Mater. Res., 63, 271 (2002) https://doi.org/10.1002/jbm.10183
  14. C. C. Berndt, G. N. Haddad, A. J. D. Farmer, and K. A. Gross, Mater. Forum, 14, 161 (1990)
  15. B. Koch, J. G. C. Wolke, and K. de Groot, J. Biomed Mater. Res., 24, 655 (1990) https://doi.org/10.1002/jbm.820240603
  16. S. R. Radin and P. Ducheine, J. Mater. Sci. Mater. Med, 3, 33 (1992)
  17. P. Cheang and K. A. Khor, J. Mater. Froc. Technol., 48, 429 (1995)
  18. H. Kurzweg, R. B. Heimann, T. Troczynski, and M. L. Wayman, Biomaterials, 19, 1507 (1998) https://doi.org/10.1016/S0142-9612(98)00067-2
  19. C. S. Chai and B. Ben-Nissan, J. Mater. Sci. Mater. Med., 10, 465 (1999) https://doi.org/10.1023/A:1008992807888
  20. P. Ducheyne, W. van Raemdonck, J. C. Heughebaert, and M. Heughebaert, Biomaterials, 11, 244 (1990) https://doi.org/10.1016/0142-9612(90)90005-B
  21. J. G. C. Wolke, K. van Dijk, H. G. Schaeken, K. de Groot, and J. A. Jansen, J. Biomed. Mater. Res., 28, 1477 (1994) https://doi.org/10.1002/jbm.820281213
  22. J. L. Ong, L. C. Lucas, W. R. Lacefield, and E. D. Rigney, J. Biomed. Mater. Res., 13, 249 (1992)
  23. T. S. Chen and W. R. Lacefield, J. Mater. Res., 9, 1284 (1994) https://doi.org/10.1557/JMR.1994.1284
  24. M. Shirkhanzadeh, M. Azadegan, V. Stack, and S. Schreyer, Mater. Lett., 18, 211 (1994) https://doi.org/10.1016/0167-577X(94)90233-X
  25. F. Z. Cui, Z. S. Luo, and Q. L. Feng, J. Mater. Sci. Mater. Med., 8, 403 (1997) https://doi.org/10.1023/A:1018597320022
  26. C. Wang, Z. Chen, L. Guan, Z. Liu, P. Wang, S. Zheng, and X. Liao, Surf Coat. Tech., 130, 39 (2000) https://doi.org/10.1016/S0257-8972(00)00705-2
  27. C. M. Cotell, D. B. Chrisey, K. S. Grabowski, J. A. Sprague, and C. R. Gossett, J. Appl. Biomat., 3, 87 (1992) https://doi.org/10.1002/jab.770030204
  28. P. Baeri, L. Torrisi, N. Marino, and G. Foti, Appl. Surf Sci., 54, 210 (1992) https://doi.org/10.1016/0169-4332(92)90046-Z
  29. L. Cleries, J. M. Fenandez-Pradas, and J. L. Morenza, J. Biomed. Mater. Res., 49, 43 (2000) https://doi.org/10.1002/(SICI)1097-4636(200001)49:1<43::AID-JBM6>3.0.CO;2-G
  30. V. Nelea, H. Pelletier, M. Iliescu, J. Werckmann, V. Craciun, J. N. Mihailescu, C. Ristoscu, and C. Ghica, J. Mater. Sci. Mater Med., 13, 1167 (2002) https://doi.org/10.1023/A:1021150207350
  31. L. L. Hench, Bioceramics, J. Am. Ceram. Soc., 81, 1705 (1998)
  32. W. R. Lacefield, Ann. NY Acd. Sci., 523, 72 (1988) https://doi.org/10.1111/j.1749-6632.1988.tb38501.x
  33. T. Kokubo, H. Kushitani, Y. Abe, and T. Yamamuro, Bioceramics, 2, 235 (1989)
  34. F. Barrere, P. Layrolle, C. A. van Blitterswijk, and K. de Groot, Bone, 25, 107S (1999) https://doi.org/10.1016/S8756-3282(99)00145-3
  35. A. S. Hoffman, Clin. Mater., 11, 61 (1992) https://doi.org/10.1016/0267-6605(92)90030-W
  36. D. A. Lauffenburge, Appl. Mech. Rev., 47, S287 (1994) https://doi.org/10.1115/1.3124425
  37. S. P. Palecek, J. C. Loftus, M. H. Ginsberg, D. A. LaufJenburger, and A. F. Horwitz, Nature, 385, 537 (1997) https://doi.org/10.1038/385537a0
  38. B. T. Houseman and M. Mrksich, Biomaterials, 22, 943 (2001) https://doi.org/10.1016/S0142-9612(00)00259-3
  39. D. H. Davis, C. S. Giannoulis, R. W. Johnson, and T. A. Desai, Biomaterials, 23, 4019 (2002) https://doi.org/10.1016/S0142-9612(02)00152-7
  40. L. Getter, S. N. Bhaskar, D. E. Cutright, B. Perez, J. M. Brady, T. D. Driskell, and M. J. O'Hara, Oral. Surg, 30, 263 (1972)
  41. W. A. Mors and E. J. Kaminski, Arch. Oral. BioI., 20, 365 (1975)
  42. H. B. Wen, J. R. de Wijn, F. Z. Cui, and K. de Groot, J. Biomed. Mater. Res., 41, 227 (1998) https://doi.org/10.1002/(SICI)1097-4636(199808)41:2<227::AID-JBM7>3.0.CO;2-K
  43. P. Ducheyne and J. Cuckler, Clin. Orthop., 276, 102 (1992)
  44. B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao, and X. D. Zhang, Biomaterials, 23, 173 (2002) https://doi.org/10.1016/S0142-9612(01)00093-X
  45. D. Perizzollo, W. R. Lacefield, and D. M. Brunette, J. Biomed. Mater. Res., 56, 494 (2001) https://doi.org/10.1002/1097-4636(20010915)56:4<494::AID-JBM1121>3.0.CO;2-X
  46. D. Campoccia, C. R. Arciola, M. Cervellati, M. Cristina Maltarello, and L. Montanaro, Biomaterials, 24, 587 (2003) https://doi.org/10.1016/S0142-9612(02)00373-3
  47. S. R. Sousa and M. A. Barbosa, Biomaterials, 17, 397 (1996) https://doi.org/10.1016/0142-9612(96)89655-4
  48. A. K. Lynn and D. L. DuQuesnay, Biomaterials, 23, 1947 (2002) https://doi.org/10.1016/S0142-9612(01)00320-9
  49. M. C. Garcia-Alonso, L. Sakada, G. Valles, J. L. Gonzalez-Carrasco, J. Gonzalez-Cabrero, M. E. Martinez, E. Gil-Garay, and L. Munuera, Biomaterials, 24, 19 (2003) https://doi.org/10.1016/S0142-9612(02)00237-5
  50. M. J. Mo, S.-D. Kim, H. Y. Shin, D.-S. Im, J. H. Jung, J.-S. Ko, and W.-K. Lee, J. Ind. Eng. Chem., 11, 507 (2005)
  51. Y. C. Yang, E. Chang, B. H. Hwang, and S. Y. Lee, Biomaterials, 21, 1327 (2000) https://doi.org/10.1016/S0142-9612(99)00272-0
  52. T. Kokubo, J. Non-Cryst. Solids, 120, 138 (1990) https://doi.org/10.1016/0022-3093(90)90199-V
  53. K.-E. Kim, M.-J. Mo, and W.-K. Lee, J. Korean Ind. Eng. Chem., 16, 112 (2005)
  54. Y. Fang and D. G. Dalgleish, J. Colloid Interface Sci., 196, 292 (1997) https://doi.org/10.1006/jcis.1997.5191
  55. C. Yongli, Z. Xiufang, G. Yandao, Z. Nanming, Z. Tingying, and S. Xinqi, J. Colloid Intellace Sci., 214, 38 (1999)
  56. W. K. Lee, J. S. Ko, and H. M. Kim, Prosp. Ind. Eng., 3, 33 (2000)
  57. J. Ono, H. Gunji, F. Kaneko, T. Saito, and Y. Kubold, Plastic Reconstructive Surg., 95, 1265 (1995) https://doi.org/10.1097/00006534-199506000-00019
  58. K. Kandori, T. Shimizu, A. Yasukawa, and T. Ishikawa, Colloid Surfaces B, 5, 81 (1995) https://doi.org/10.1016/0927-7765(95)98210-E
  59. H. Zeng, K. K. Chirtur, and W. R. Lacefield, Biomaterials, 20, 377 (1999) https://doi.org/10.1016/S0142-9612(98)00184-7
  60. S. Ouizat, A. Barroug, A. Legrouri, and C. Rey, Mater. Res. Bull., 34, 2279 (1999) https://doi.org/10.1016/S0025-5408(00)00167-7
  61. C. Combes and C. Rey, Biomaterials, 23, 2817 (2002) https://doi.org/10.1016/S0142-9612(02)00073-X
  62. Q. Luo and J. D. Andrade, J. Colloid Interface Sci., 200, 104 (1998) https://doi.org/10.1006/jcis.1997.5364
  63. D. T. H. Wassell, R. C. Hall, and G. Embery, Biomaterials, 16, 697 (1995) https://doi.org/10.1016/0142-9612(95)99697-K
  64. W. K. Lee, J. S. Ko, and H.-M. Kim, J. Colloid Interface Sci., 246, 70 (2002) https://doi.org/10.1006/jcis.2001.8026
  65. M. Tian, W. K. Lee, M. K. Bothwell, and J. McGuire, J. Colloid Interface Sci., 200, 146 (1998) https://doi.org/10.1006/jcis.1997.5348
  66. D. M. Ferris, G. D. Moodie, P. M. Dimond, C. W. D. Gioranni, M. G. Ehrlich, and R. F. Valentini, Biomaterials, 20, 2323 (1999) https://doi.org/10.1016/S0142-9612(99)00161-1
  67. S. Verrier, S. Pallu, R. Bareille, A. Jonczyk, J. Meyer, M. Dard, and J. Amedee, Biomaterials, 23, 585 (2002) https://doi.org/10.1016/S0142-9612(01)00145-4
  68. A. M. Moursi, C. H. Damsky, J. Lull, Deborah Zimmerman, S. B. Doty, S.-I. Aota, and R. K. Globus, J. Cell Sci., 109, 1369 (1996)
  69. Y. Doi, H. Iwanaga, T. Shibutani, Y. Moriwaki, and Y. Iwayama, J. Biomed. Mater. Res., 47, 424 (1999) https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3<424::AID-JBM19>3.0.CO;2-0
  70. L. C. Baxter, V. Frauchiger, M. Textor, I. ap Gwynn, and R. G. Richards, Eur. Cells Mater., 4, 1 (2002)
  71. T. Kizuki, M. Ohgaki, M. Katsura, S. Nakamura, K. Hashimoto, Y. Toda, S. Udagawa, and K. Yamashita, Biomaterials, 24, 941 (2003) https://doi.org/10.1016/S0142-9612(02)00430-1
  72. C. Knabe, F. Klar, R. Fitzner, R. J. Radlanski, and U. Gross, Biomaterials, 23, 3235 (2002) https://doi.org/10.1016/S0142-9612(02)00078-9
  73. P. Schaffuer, J. Meyer, M. Dard, R. Wenz, B. Nies, S. verrier, H. Kessler, and M. Kantlehner, J. Mater. Sci. Mater. Med., 10, 837 (1999) https://doi.org/10.1023/A:1008904513304
  74. M. Mrksich, Chem. Soc. Res., 29, 267 (2000) https://doi.org/10.1039/a705397e
  75. T. Matsuura, R. Hosokawa, K. Okamoto, T. Kimoto, and Y. Akagawa, Biomaterials, 21, 1121(2000) https://doi.org/10.1016/S0142-9612(99)00264-1
  76. J. Y. Hong, Y. J. Kim, H. W. Lee, W. K. Lee, J. S. Ko, and H. M. Kim, Biomaterials, 24, 2977 (2003) https://doi.org/10.1016/S0142-9612(03)00121-2