• 제목/요약/키워드: cellobiose

검색결과 176건 처리시간 0.027초

Leuconostoc mesenteroides B512FMC/6HG8가 생산하는 Dextransucrase에 의한 Cellobiose의 당전이반응 (Transglycosylation Reaction on Cellobiose by Dextansucrase of Leuconostoc mesenteroides B512FMC/6HG8)

  • 강현록;양지영;이현규
    • 한국식품영양과학회지
    • /
    • 제29권5호
    • /
    • pp.802-806
    • /
    • 2000
  • Cellobiose에 당전이 효소인 dextransucrase를 여러 가지 조건별로 반응시켜 올리고당의 생성경향을 알아보았다. Cellobiose에 대한 acceptor 반응의 최적조건은 cellobiose와 surcose의 비율은 3:1, 효소의 양은 2 U/mL, buffer의 이온강도는 25 mM, pH는 5, 반응온도는 $25^{\circ}C$로 나타났다. Cellobiose의 acceptor products는 종합도 6까지 생성되었으며, 구조는 2-O-isomaltodextrinyl cellobiose로 추정하였다.

  • PDF

Pichia stipitis에 의한 Glucose, Xylose 및 Cellobiose의 발효 (Fermentation of Glucose, Xylose and Cellobiose by Pichia stipitis)

  • 이유석;권윤중;변유량
    • 한국미생물·생명공학회지
    • /
    • 제20권1호
    • /
    • pp.91-95
    • /
    • 1992
  • Xylose와 cellobiose를 모두 발효할 수 있는 효모를 선발한 결과 Pichia stipitis CBS 5775와 5776이 가장 우수하였다. P.stipitis CBS 5776은 glucose, xylose 및 cellobiose에서 각각 0.4, 0.36 및 0.23g/g substrate의 에탄올 수율을 나타내었다. 혼합당에서의 발효 결과 glucose는 xylose와 cellobiose 이용에 대하여 catabolite regulation을 일으켜서 glucose가 다 소비된 후에 다른 기질이 소비되었다. 그러나 xylose와 cellobiose는 동시에 소비되었다. 혼합기질에서의 에탄올 수율은 단일기질에서의 각각의 수율의 합과 거의 유사하였다.

  • PDF

적응진화를 활용한 cellobiose와 xylose 동시발효 Pichia stipitis의 개발 (Development of Pichia stipitis Co-fermenting Cellobiose and Xylose Through Adaptive Evolution)

  • 김대환;이원흥
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.565-573
    • /
    • 2019
  • 섬유소계 바이오매스로부터 바이오 연료 등과 같은 유용한 물질을 생산하기 위해서는 바이오매스로부터 유래하는 혼합당을 효과적으로 대사할 수 있는 균주의 개발이 필수적이다. 본 연구에서는 xylose를 대사가 가능한 효모인 P. stipitis를 적응진화하여 cellobiose 대사효율이 향상되고 cellobiose와 xylose를 동시에 대사할 수 있는 균주를 개발하고자 하였다. 총 10회의 계대배양을 통해 얻어진 진화된 P. stipitis 돌연변이 균주는 모균주에 비해 6배 이상 증가된 cellobiose 대사속도를 나타내었으며 ethanol 생산수율을 0에서 0.4 (g ethanol/g cellobiose)로 향상시켰다. 아울러 본 실험에서 개발한 돌연변이 균주는 cellobiose와 xylose 혼합당 조건에서 모균주에 비해 2배 가까이 향상된 ethanol 생산 및 생산속도를 나타내었다.

Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation

  • Choi, Hyo-Jin;Jin, Yong-Su;Lee, Won-Heong
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.117-125
    • /
    • 2022
  • Until recently, four types of cellobiose-fermenting Saccharomyces cerevisiae strains have been developed by introduction of a cellobiose metabolic pathway based on either intracellular β-glucosidase (GH1-1) or cellobiose phosphorylase (CBP), along with either an energy-consuming active cellodextrin transporter (CDT-1) or a non-energy-consuming passive cellodextrin facilitator (CDT-2). In this study, the ethanol production performance of two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-2 (N306I) with GH1-1 or CBP were compared with two cellobiose-fermenting S. cerevisiae strains expressing mutant CDT-1 (F213L) with GH1-1 or CBP in the simultaneous saccharification and fermentation (SSF) of cellulose under various conditions. It was found that, regardless of the SSF conditions, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the best ethanol production among the four strains. In addition, during SSF contaminated by lactic acid bacteria, the phosphorolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-2 with CBP showed the highest ethanol production and the lowest lactate formation compared with those of other strains, such as the hydrolytic cellobiose-fermenting S. cerevisiae expressing mutant CDT-1 with GH1-1, and the glucose-fermenting S. cerevisiae with extracellular β-glucosidase. These results suggest that the cellobiose-fermenting yeast strain exhibiting low energy consumption can enhance the efficiency of the SSF of cellulosic biomass.

Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Saccharomyces cerevisiae Fermenting Cellobiose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.1035-1043
    • /
    • 2021
  • Although engineered Saccharomyces cerevisiae fermenting cellobiose is useful for the production of biofuels from cellulosic biomass, cellodextrin accumulation is one of the main problems reducing ethanol yield and productivity in cellobiose fermentation with S. cerevisiae expressing cellodextrin transporter (CDT) and intracellular β-glucosidase (GH1-1). In this study, we investigated the reason for the cellodextrin accumulation and how to alleviate its formation during cellobiose fermentation using engineered S. cerevisiae fermenting cellobiose. From the series of cellobiose fermentation using S. cerevisiae expressing only GH1-1 under several culture conditions, it was discovered that small amounts of GH1-1 were secreted and cellodextrin was generated through trans-glycosylation activity of the secreted GH1-1. As GH1-1 does not have a secretion signal peptide, non-conventional protein secretion might facilitate the secretion of GH1-1. In cellobiose fermentations with S. cerevisiae expressing only GH1-1, knockout of TLG2 gene involved in non-conventional protein secretion pathway significantly delayed cellodextrin formation by reducing the secretion of GH1-1 by more than 50%. However, in cellobiose fermentations with S. cerevisiae expressing both GH1-1 and CDT-1, TLG2 knockout did not show a significant effect on cellodextrin formation, although secretion of GH1-1 was reduced by more than 40%. These results suggest that the development of new intracellular β-glucosidase, not influenced by non-conventional protein secretion, is required for better cellobiose fermentation performances of engineered S. cerevisiae fermenting cellobiose.

Kinetic Models for Growth and Product Formation on Multiple Substrates

  • Kwon, Yun-Joong;Engler, Cady R.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권6호
    • /
    • pp.587-592
    • /
    • 2005
  • Hydrolyzates from lignocellulosic biomass contain a mixture of simple sugars; the predominant ones being glucose, cellobiose and xylose. The fermentation of such mixtures to ethanol or other chemicals requires an understanding of how each of these substrates is utilized. Candida lusitaniae can efficiently produce ethanol from both glucose and cellobiose and is an attractive organism for ethanol production. Experiments were performed to obtain kinetic data for ethanol production from glucose, cellobiose and xylose. Various combinations were tested in order to determine kinetic behavior with multiple carbon sources. Glucose was shown to repress the utilization of cellobiose and xylose. However, cellobiose and xylose were simultaneously utilized after glucose depletion. Maximum volumetric ethanol production rates were 0.56, 0.33, and 0.003 g/L h from glucose, cellobiose and xylose, respectively. A kinetic model based on cAMP mediated catabolite repression was developed. This model adequately described the growth and ethanol production from a mixture of sugars in a batch culture.

Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1649-1656
    • /
    • 2017
  • In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular ${\beta}$-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular ${\beta}$-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

Comprehensive Characterization of Mutant Pichia stipitis Co-Fermenting Cellobiose and Xylose through Genomic and Transcriptomic Analyses

  • Dae-Hwan Kim;Hyo-Jin Choi;Yu Rim Lee;Soo-Jung Kim;Sangmin Lee;Won-Heong Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권11호
    • /
    • pp.1485-1495
    • /
    • 2022
  • The development of a yeast strain capable of fermenting mixed sugars efficiently is crucial for producing biofuels and value-added materials from cellulosic biomass. Previously, a mutant Pichia stipitis YN14 strain capable of co-fermenting xylose and cellobiose was developed through evolutionary engineering of the wild-type P. stipitis CBS6054 strain, which was incapable of co-fermenting xylose and cellobiose. In this study, through genomic and transcriptomic analyses, we sought to investigate the reasons for the improved sugar metabolic performance of the mutant YN14 strain in comparison with the parental CBS6054 strain. Unfortunately, comparative whole-genome sequencing (WGS) showed no mutation in any of the genes involved in the cellobiose metabolism between the two strains. However, comparative RNA sequencing (RNA-seq) revealed that the YN14 strain had 101.2 times and 5.9 times higher expression levels of HXT2.3 and BGL2 genes involved in cellobiose metabolism, and 6.9 times and 75.9 times lower expression levels of COX17 and SOD2.2 genes involved in respiration, respectively, compared with the CBS6054 strain. This may explain how the YN14 strain enhanced cellobiose metabolic performance and shifted the direction of cellobiose metabolic flux from respiration to fermentation in the presence of cellobiose compared with the CBS6054 strain.

Mapping of Carbon Flow Distribution in the Central Metabolic Pathways of Clostridium cellulolyticum: Direct Comparison of Bacterial Metabolism with a Soluble versus an Insoluble Carbon Source

  • DESVAUX, MICKAEL,
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1200-1210
    • /
    • 2004
  • Metabolic flux analysis was established by adapting previous stoichiometric model developed during growth with cellulose to cell grown with cellobiose for further direct comparison of the bacterial metabolism. In carbon limitation with cellobiose, a shift from acetate-ethanol fermentation to ethanol-lactate fermentation is observed and the pyruvate overflow is much higher than with cellulose. In nitrogen limitation with cellobiose, the cellodextrin and exopolysaccharide overflows are much higher than on cellulose. In carbon and nitrogen saturation with cellobiose, the cellodextrin, exopolysaccharide, and free amino acids overflows reach the highest levels observed but all remain limited on cellulose. By completely shunting the cellulosome, the use of cellobiose allows to reach much higher carbon consumption rates which, in return, highlights the metabolic limitation of C. cellulolyticum. Therefore, the physical nature of the carbon source has a profound impact on the metabolism of C. cellulolyticum and most probably of other cellulolytic bacteria. For cellulolytic bacteria, the use of soluble carbon substrate must carefully be taken into consideration for the interpretation of results. Direct comparison of metabolic flux analysis from cellobiose and cellulose revealed the importance of cellulosome, phosphoglucomutase and pyruvate-ferredoxin oxidoreductase in the distribution of carbon flow in the central metabolism. In the light of these findings, future directions for improvement of cellulose catabolism by this bacterium are discussed.