Browse > Article
http://dx.doi.org/10.4014/jmb.2209.09004

Comprehensive Characterization of Mutant Pichia stipitis Co-Fermenting Cellobiose and Xylose through Genomic and Transcriptomic Analyses  

Dae-Hwan Kim (Department of Bioenergy Science and Technology, Chonnam National University)
Hyo-Jin Choi (Department of Bioenergy Science and Technology, Chonnam National University)
Yu Rim Lee (Interdisciplinary Program of Agriculture and Life Science, Chonnam National University)
Soo-Jung Kim (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University)
Sangmin Lee (Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research)
Won-Heong Lee (Department of Bioenergy Science and Technology, Chonnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.11, 2022 , pp. 1485-1495 More about this Journal
Abstract
The development of a yeast strain capable of fermenting mixed sugars efficiently is crucial for producing biofuels and value-added materials from cellulosic biomass. Previously, a mutant Pichia stipitis YN14 strain capable of co-fermenting xylose and cellobiose was developed through evolutionary engineering of the wild-type P. stipitis CBS6054 strain, which was incapable of co-fermenting xylose and cellobiose. In this study, through genomic and transcriptomic analyses, we sought to investigate the reasons for the improved sugar metabolic performance of the mutant YN14 strain in comparison with the parental CBS6054 strain. Unfortunately, comparative whole-genome sequencing (WGS) showed no mutation in any of the genes involved in the cellobiose metabolism between the two strains. However, comparative RNA sequencing (RNA-seq) revealed that the YN14 strain had 101.2 times and 5.9 times higher expression levels of HXT2.3 and BGL2 genes involved in cellobiose metabolism, and 6.9 times and 75.9 times lower expression levels of COX17 and SOD2.2 genes involved in respiration, respectively, compared with the CBS6054 strain. This may explain how the YN14 strain enhanced cellobiose metabolic performance and shifted the direction of cellobiose metabolic flux from respiration to fermentation in the presence of cellobiose compared with the CBS6054 strain.
Keywords
Mutant Pichia stipitis; cellobiose; xylose; whole-genome sequencing; RNA sequencing;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Graves JA, Henry SA. 2000. Regulation of the yeast INO1 gene: The products of the INO2, INO4 and OPI1 regulatory genes are not required for repression in response to inositol. Genetics 154: 1485-1495.   DOI
2 Ding J, Huang X, Zhang L, Zhao N, Yang D, Zhang K. 2009. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 85: 253-263.   DOI
3 Weierstall T, Hollenberg CP, Boles E. 1999. Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol. Microbiol. 31: 871-883.   DOI
4 Young E, Poucher A, Comer A, Bailey A, Alper H. 2011. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl. Environ. Microbiol. 77: 3311-3319.   DOI
5 Watanabe S, Utsumi Y, Sawayama S, Watanabe Y. 2016. Identification and characterization of D-arabinose reductase and D-arabinose transporters from Pichia stipitis. Biosci. Biotechnol. Biochem. 80: 2151-2158.   DOI
6 Moon J, Liu ZL, Ma M, Slininger PJ. 2013. New genotypes of industrial yeast Saccharomyces cerevisiae engineered with YXI and heterologous xylose transporters improve xylose utilization and ethanol production. Biocatal. Agric. Biotechnol. 2: 247-254.   DOI
7 Glerum DM, Shtanko A, Tzagoloff A. 1996. Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271: 14504-14509.   DOI
8 Gamberi T, Puglia M, Bianchi L, Gimigliano A, Landi C, Magherini F, et al. 2012. Evaluation of SCO1 deletion on Saccharomyces cerevisiae metabolism through a proteomic approach. Proteomics 12: 1767-1780.   DOI
9 Wang Z, Wang Y, Hegg EL. 2009. Regulation of the heme A biosynthetic pathway: differential regulation of heme A synthase and heme O synthase in Saccharomyces cerevisiae. J. Biol. Chem. 284: 839-847.   DOI
10 Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F. 2009. Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. Biochim. Biophys. Acta 1793: 97-107.   DOI
11 Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schagger H. 1999. ATP synthase of yeast mitochondria: Isolation of subunit j and disruption of the ATP18 gene. J. Biol. Chem. 274: 36-40.   DOI
12 Salsaa M, Pereira B, Liu J, Yu W, Jadhav S, Huttemann M, et al. 2020. Valproate inhibits mitochondrial bioenergetics and increases glycolysis in Saccharomyces cerevisiae. Sci. Rep. 10: 11785.
13 Pan Y. 2011. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp. Gerontol. 46: 847-852.   DOI
14 Perrone GG, Tan S-X, Dawes IW. 2008. Reactive oxygen species and yeast apoptosis. Biochim. Biophys. Acta 1783: 1354-1368.   DOI
15 Ramos-Alonso L, Romero AM, Martinez-Pastor MT, Puig S. 2020. Iron regulatory mechanisms in Saccharomyces cerevisiae. Front. Microbiol. 11: 582830.
16 Parisutham V, Chandran SP, Mukhopadhyay A, Lee SK, Keasling JD. 2017. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. Bioresour. Technol. 239: 496-506.   DOI
17 Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282.   DOI
18 Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334-361.   DOI
19 Hou J, Qiu C, Shen Y, Li H, Bao X. 2017. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. FEMS. Yeast Res. 17. doi: 10.1093/femsyr/fox034.   DOI
20 Ha SJ, Kim SR, Kim H, Du J, Cate JH, Jin YS. 2013. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Bioresour. Technol. 149: 525-531.   DOI
21 Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509.   DOI
22 Lee WH, Jin YS. 2021. Observation of cellodextrin accumulation resulted from non-conventional secretion of intracellular β-glucosidase by engineered Saccharomyces cerevisiae fermenting cellobiose. J. Microbiol. Biotechnol. 31: 1035-1043.   DOI
23 Chomvong K, Kordi? V, Li X, Bauer S, Gillespie AE, Ha SJ, Oh EJ, et al. 2014. Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnol. Biofuels. 7: 85.
24 Agbogbo FK, Coward-Kelly G. 2008. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol. Lett. 30: 1515-1524.   DOI
25 Zara G, Nardi T. 2021. Yeast metabolism and its exploitation in emerging winemaking trends: from sulfite tolerance to sulfite reduction. Fermentation 7: 57.
26 De Freitas JM, Liba A, Meneghini R, Valentine JS, Gralla EB. 2000. Yeast lacking Cu-Zn superoxide dismutase show altered iron homeostasis: role of oxidative stress in iron metabolism. J. Biol. Chem. 275: 11645-11649.   DOI
27 De Freitas J, Wintz H, Hyoun Kim J, Poynton H, Fox T, Vulpe C. 2003. Yeast, a model organism for iron and copper metabolism studies. Biometals 16: 185-197.   DOI
28 Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A. 1996. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271: 1552-1557.   DOI
29 Sa-Correia I, dos Santos SC, Teixeira MC, Cabrito TR, Mira NP. 2009. Drug: H+  antiporters in chemical stress response in yeast. Trends Microbiol. 17: 22-31.   DOI
30 Felder T, Bogengruber E, Tenreiro S, Ellinger A, Sa-Correia I, Briza P. 2002. Dtr1p, a multidrug resistance transporter of the major facilitator superfamily, plays an essential role in spore wall maturation in Saccharomyces cerevisiae. Eukaryot. Cell 1: 799-810.   DOI
31 Jungwirth H, Kuchler K. 2006. Yeast ABC transporters - a tale of sex, stress, drugs and aging. FEBS Lett. 580: 1131-1138.   DOI
32 Amoah J, Kahar P, Ogino C, Kondo A. 2019. Bioenergy and Biorefinery: feedstock, biotechnological conversion and products. Biotechnol. J. 14: 1800494.
33 Rosales-Calderon O, Arantes V. 2019. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol. Biofuels 12: 240.
34 Zhang GC, Liu JJ, Kong II, Kwak S, Jin YS. 2015. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr. Opin. Chem. Biol. 29: 49-57.   DOI
35 Geiger M, Gibbons J, West T, Hughes SR, Gibbons W. 2012. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production. J. Lab. Autom. 17: 417-424.   DOI
36 Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, et al. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25: 319-326.   DOI
37 Jeffries TW, Van Vleet JR. 2009. Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res. 9: 793-807.   DOI
38 Kim DH, Lee WH. 2019. Development of Pichia stipitis co-fermenting cellobiose and xylose through adaptive evolution. Microbiol. Biotechnol. Lett. 47: 565-573.   DOI
39 Lambrechts MG, Bauer FF, Marmur J, Pretorius IS. 1996. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc. Natl. Acad. Sci. USA 93: 8419-8424.   DOI
40 Liu T, Zou W, Liu L, Chen J. 2012. A constraint-based model of Scheffersomyces stipitis for improved ethanol production. Biotechnol. Biofuels 5: 72.
41 Nelson SS, Van Vleet JH, Jeffries TW. 2010. Presented at the 32nd Symposium on Biotechnology for Fuels and Chemicals, Clearwater Beach, FL.