Browse > Article
http://dx.doi.org/10.4014/mbl.1909.09005

Development of Pichia stipitis Co-fermenting Cellobiose and Xylose Through Adaptive Evolution  

Kim, Dae-Hwan (Department of Bioenergy Science and Technology, Chonnam National University)
Lee, Won-Heong (Department of Bioenergy Science and Technology, Chonnam National University)
Publication Information
Microbiology and Biotechnology Letters / v.47, no.4, 2019 , pp. 565-573 More about this Journal
Abstract
Production of biofuels and value-added materials from cellulosic biomass requires the development of a microbial strain capable of efficiently fermenting mixed sugars. In this study, the natural xylose fermenting yeast, Pichia stipitis, was evolved to simultaneously ferment cellobiose and xylose. Serial subcultures of wild-type P. stipitis in 20 g/l cellobiose were performed to increase the rate of cellobiose consumption. A total of ten rounds of the serial subculture led to the isolation of an evolved strain fermenting cellobiose significantly faster than the parental strain. The evolved strain displayed enhanced ethanol yield from 0 to 0.4 g ethanol/g cellobiose. The evolved P. stipitis simultaneously fermented cellobiose and xylose in batch fermentation. The genetic information of our evolved P. stipitis would be valuable in the development of a microbial host for the production of biofuels and biomaterials from cellulosic biomass.
Keywords
Pichia stipitis; cellobiose; xylose; co-fermentation; adaptive evolution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amoah J, Kahar P, Ogino C, Kondo A. 2019. Bioenergy and Biorefinery: feedstock, biotechnological conversion and products. Biotechnol. J. 14: e1800494.
2 Gray KA, Zhao L, Emptage M. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10: 141-146.   DOI
3 Turner TL, Kim H, Kong II, Liu JJ, Zhang GC, Jin YS. 2018. Engineering and evolution of Saccharomyces cerevisiae to produce biofuels and chemicals. Adv. Biochem. Eng. Biotechnol. 162: 175-215.
4 Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62: 334-361.   DOI
5 Kayikci O, Nielsen J. 2015. Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res. 15: fov068.   DOI
6 Jin YS, Cate JH. 2017. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr. Opin. Chem. Biol. 41: 99-106.   DOI
7 Park YC, Oh EJ, Jo JH, Jin YS, Seo JH. 2016. Recent advances in biological production of sugar alcohols. Curr. Opin. Biotechnol. 37: 105-113.   DOI
8 Zhang GC, Liu JJ, Kong II, Kwak S, Jin YS. 2015. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr. Opin. Chem. Biol. 29: 49-57.   DOI
9 Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, et al. 2013. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One. 8: e57048.   DOI
10 Kim SR, Park YC, Jin YS, Seo JH. 2013. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31: 851-861.   DOI
11 Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282.   DOI
12 Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS. 2015. Rapid and marker‐free refactoring of xylose‐fermenting yeast strains with Cas9/CRISPR. Biotechnol. Bioeng. 112: 2406-2411.   DOI
13 Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509.   DOI
14 Ha SJ, Galazka JM, Oh EJ, Kordić V, Kim H, Jin YS, et al. 2013. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab. Eng. 15: 134-143.   DOI
15 Bae YH, Kang KH, Jin YS, Seo JH. 2014. Molecular cloning and expression of fungal cellobiose transporters and ${\beta}$-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J. Biotechnol. 169: 34-41.   DOI
16 Chomvong K, Kordić V, Li X, Bauer S, Gillespie AE, Ha SJ, et al. 2014. Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnol. Biofuels. 7: 85.   DOI
17 Geiger M, Gibbons J, West T, Hughes SR, Gibbons W. 2012. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production. J. Lab. Autom. 17: 417-424.   DOI
18 Agbogbo FK, Coward-Kelly G. 2008. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol. Lett. 30: 1515-1524.   DOI
19 Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, et al. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat. Biotechnol. 25: 319-326.   DOI
20 Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G. 1990. Fermentation of hardwood hemicellulose hydrolysate by Pachysolen tannophilus, Candida shehatae and Pichia stipitis. J. Ind. Microbiol. 6: 157-164.   DOI
21 Lang GI, Desai MM. 2014. The spectrum of adaptive mutations in experimental evolution. Genomics 104: 412-416.   DOI
22 Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. 2019. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 8: 1-16.   DOI
23 Winkler JD, Kao KC. 2014. Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104: 406-411.   DOI
24 Jeffries TW, Van Vleet JRH. 2009. Pichia stipitis genomics, transcriptomics, and gene clusters. FEMS Yeast Res. 9: 793-807.   DOI
25 Ha SJ, Kim H, Lin Y, Jang M-U, Galazka JM, Kim TJ, et al. 2013. Single amino acid substitutions in HXT2. 4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79: 1500-1507.   DOI
26 Nelson SS, Van Vleet JH, Jeffries TW. 2010. Presented at the 32nd Symposium on Biotechnology for Fuels and Chemicals, Clearwater Beach, FL.